12,677 research outputs found

    UNION: A Trust Model Distinguishing Intentional and Unintentional Misbehavior in Inter-UAV Communication

    Full text link
    [EN] Ensuring the desired level of security is an important issue in all communicating systems, and it becomes more challenging in wireless environments. Flying Ad Hoc Networks (FANETs) are an emerging type of mobile network that is built using energy-restricted devices. Hence, the communications interface used and that computation complexity are additional factors to consider when designing secure protocols for these networks. In the literature, various solutions have been proposed to ensure secure and reliable internode communications, and these FANET nodes are known as Unmanned Aerial Vehicles (UAVs). In general, these UAVs are often detected as malicious due to an unintentional misbehavior related to the physical features of the UAVs, the communication mediums, or the network interface. In this paper, we propose a new context-aware trust-based solution to distinguish between intentional and unintentional UAV misbehavior. The main goal is to minimize the generated error ratio while meeting the desired security levels. Our proposal simultaneously establishes the inter-UAV trust and estimates the current context in terms of UAV energy, mobility pattern, and enqueued packets, in order to ensure full context awareness in the overall honesty evaluation. In addition, based on computed trust and context metrics, we also propose a new inter-UAV packet delivery strategy. Simulations conducted using NS2.35 evidence the efficiency of our proposal, called UNION., at ensuring high detection ratios > 87% and high accuracy with reduced end-to-end delay, clearly outperforming previous proposals known as RPM, T-CLAIDS, and CATrust.This research is partially supported by the United Arab Emirates University (UAEU) under Grant no. 31T065.Barka, E.; Kerrache, CA.; Lagraa, N.; Lakas, A.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J. (2018). UNION: A Trust Model Distinguishing Intentional and Unintentional Misbehavior in Inter-UAV Communication. Journal of Advanced Transportation. 1-12. https://doi.org/10.1155/2018/7475357S112Ghazzai, H., Ben Ghorbel, M., Kadri, A., Hossain, M. J., & Menouar, H. (2017). Energy-Efficient Management of Unmanned Aerial Vehicles for Underlay Cognitive Radio Systems. IEEE Transactions on Green Communications and Networking, 1(4), 434-443. doi:10.1109/tgcn.2017.2750721Sharma, V., & Kumar, R. (2016). Cooperative frameworks and network models for flying ad hoc networks: a survey. Concurrency and Computation: Practice and Experience, 29(4), e3931. doi:10.1002/cpe.3931Sun, J., Wang, W., Kou, L., Lin, Y., Zhang, L., Da, Q., & Chen, L. (2017). A data authentication scheme for UAV ad hoc network communication. The Journal of Supercomputing, 76(6), 4041-4056. doi:10.1007/s11227-017-2179-3He, D., Chan, S., & Guizani, M. (2017). Drone-Assisted Public Safety Networks: The Security Aspect. IEEE Communications Magazine, 55(8), 218-223. doi:10.1109/mcom.2017.1600799cmSeong-Woo Kim, & Seung-Woo Seo. (2012). Cooperative Unmanned Autonomous Vehicle Control for Spatially Secure Group Communications. IEEE Journal on Selected Areas in Communications, 30(5), 870-882. doi:10.1109/jsac.2012.120604Singh, A., Maheshwari, M., Nikhil, & Kumar, N. (2011). Security and Trust Management in MANET. Communications in Computer and Information Science, 384-387. doi:10.1007/978-3-642-20573-6_67Kerrache, C. A., Calafate, C. T., Cano, J.-C., Lagraa, N., & Manzoni, P. (2016). Trust Management for Vehicular Networks: An Adversary-Oriented Overview. IEEE Access, 4, 9293-9307. doi:10.1109/access.2016.2645452Li, W., & Song, H. (2016). ART: An Attack-Resistant Trust Management Scheme for Securing Vehicular Ad Hoc Networks. IEEE Transactions on Intelligent Transportation Systems, 17(4), 960-969. doi:10.1109/tits.2015.2494017Raghunathan, V., Schurgers, C., Sung Park, & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40-50. doi:10.1109/79.985679Feeney, L. M. (2001). Mobile Networks and Applications, 6(3), 239-249. doi:10.1023/a:1011474616255De Rango, F., Guerriero, F., & Fazio, P. (2012). Link-Stability and Energy Aware Routing Protocol in Distributed Wireless Networks. IEEE Transactions on Parallel and Distributed Systems, 23(4), 713-726. doi:10.1109/tpds.2010.160Hyytia, E., Lassila, P., & Virtamo, J. (2006). Spatial node distribution of the random waypoint mobility model with applications. IEEE Transactions on Mobile Computing, 5(6), 680-694. doi:10.1109/tmc.2006.86Wang, Y., Chen, I.-R., Cho, J.-H., Swami, A., Lu, Y.-C., Lu, C.-T., & Tsai, J. J. P. (2018). CATrust: Context-Aware Trust Management for Service-Oriented Ad Hoc Networks. IEEE Transactions on Services Computing, 11(6), 908-921. doi:10.1109/tsc.2016.2587259Kumar, N., & Chilamkurti, N. (2014). Collaborative trust aware intelligent intrusion detection in VANETs. Computers & Electrical Engineering, 40(6), 1981-1996. doi:10.1016/j.compeleceng.2014.01.00

    Trust-based security for the OLSR routing protocol

    Get PDF
    International audienceThe trust is always present implicitly in the protocols based on cooperation, in particular, between the entities involved in routing operations in Ad hoc networks. Indeed, as the wireless range of such nodes is limited, the nodes mutually cooperate with their neighbors in order to extend the remote nodes and the entire network. In our work, we are interested by trust as security solution for OLSR protocol. This approach fits particularly with characteristics of ad hoc networks. Moreover, the explicit trust management allows entities to reason with and about trust, and to take decisions regarding other entities. In this paper, we detail the techniques and the contributions in trust-based security in OLSR. We present trust-based analysis of the OLSR protocol using trust specification language, and we show how trust-based reasoning can allow each node to evaluate the behavior of the other nodes. After the detection of misbehaving nodes, we propose solutions of prevention and countermeasures to resolve the situations of inconsistency, and counter the malicious nodes. We demonstrate the effectiveness of our solution taking different simulated attacks scenarios. Our approach brings few modifications and is still compatible with the bare OLSR

    Observation-based Cooperation Enforcement in Ad Hoc Networks

    Full text link
    Ad hoc networks rely on the cooperation of the nodes participating in the network to forward packets for each other. A node may decide not to cooperate to save its resources while still using the network to relay its traffic. If too many nodes exhibit this behavior, network performance degrades and cooperating nodes may find themselves unfairly loaded. Most previous efforts to counter this behavior have relied on further cooperation between nodes to exchange reputation information about other nodes. If a node observes another node not participating correctly, it reports this observation to other nodes who then take action to avoid being affected and potentially punish the bad node by refusing to forward its traffic. Unfortunately, such second-hand reputation information is subject to false accusations and requires maintaining trust relationships with other nodes. The objective of OCEAN is to avoid this trust-management machinery and see how far we can get simply by using direct first-hand observations of other nodes' behavior. We find that, in many scenarios, OCEAN can do as well as, or even better than, schemes requiring second-hand reputation exchanges. This encouraging result could possibly help obviate solutions requiring trust-management for some contexts.Comment: 10 pages, 7 figure

    Securing personal distributed environments

    Get PDF
    The Personal Distributed Environment (PDE) is a new concept being developed by Mobile VCE allowing future mobile users flexible access to their information and services. Unlike traditional mobile communications, the PDE user no longer needs to establish his or her personal communication link solely through one subscribing network but rather a diversity of disparate devices and access technologies whenever and wherever he or she requires. Depending on the services’ availability and coverage in the location, the PDE communication configuration could be, for instance, via a mobile radio system and a wireless ad hoc network or a digital broadcast system and a fixed telephone network. This new form of communication configuration inherently imposes newer and higher security challenges relating to identity and authorising issues especially when the number of involved entities, accessible network nodes and service providers, builds up. These also include the issue of how the subscribed service and the user’s personal information can be securely and seamlessly handed over via multiple networks, all of which can be changing dynamically. Without such security, users and operators will not be prepared to trust their information to other networks
    • 

    corecore