36 research outputs found

    Distributed match-making

    Get PDF
    In many distributed computing environments, processes are concurrently executed by nodes in a store- and-forward communication network. Distributed control issues as diverse as name server, mutual exclusion, and replicated data management involve making matches between such processes. We propose a formal problem called distributed match-making as the generic paradigm. Algorithms for distributed match-making are developed and the complexity is investigated in terms of messages and in terms of storage needed. Lower bounds on the complexity of distributed match-making are established. Optimal algorithms, or nearly optimal algorithms, are given for particular network topologies

    Distributed match-making

    Get PDF

    Center for Space Microelectronics Technology 1988-1989 technical report

    Get PDF
    The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents

    [Research activities in applied mathematics, fluid mechanics, and computer science]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995

    Distributed Simulation of High-Level Algebraic Petri Nets

    Get PDF
    In the field of Petri nets, simulation is an essential tool to validate and evaluate models. Conventional simulation techniques, designed for their use in sequential computers, are too slow if the system to simulate is large or complex. The aim of this work is to search for techniques to accelerate simulations exploiting the parallelism available in current, commercial multicomputers, and to use these techniques to study a class of Petri nets called high-level algebraic nets. These nets exploit the rich theory of algebraic specifications for high-level Petri nets: Petri nets gain a great deal of modelling power by representing dynamically changing items as structured tokens whereas algebraic specifications turned out to be an adequate and flexible instrument for handling structured items. In this work we focus on ECATNets (Extended Concurrent Algebraic Term Nets) whose most distinctive feature is their semantics which is defined in terms of rewriting logic. Nevertheless, ECATNets have two drawbacks: the occultation of the aspect of time and a bad exploitation of the parallelism inherent in the models. Three distributed simulation techniques have been considered: asynchronous conservative, asynchronous optimistic and synchronous. These algorithms have been implemented in a multicomputer environment: a network of workstations. The influence that factors such as the characteristics of the simulated models, the organisation of the simulators and the characteristics of the target multicomputer have in the performance of the simulations have been measured and characterised. It is concluded that synchronous distributed simulation techniques are not suitable for the considered kind of models, although they may provide good performance in other environments. Conservative and optimistic distributed simulation techniques perform well, specially if the model to simulate is complex or large - precisely the worst case for traditional, sequential simulators. This way, studies previously considered as unrealisable, due to their exceedingly high computational cost, can be performed in reasonable times. Additionally, the spectrum of possibilities of using multicomputers can be broadened to execute more than numeric applications

    Multicast communications in distributed systems

    Get PDF
    PhD ThesisOne of the numerous results of recent developments in communication networks and distributed systems has been an increased interest in the study of applications and protocolsfor communications between multiple, as opposed to single, entities such as processes and computers. For example, in replicated file storage, a process attempts to store a file on several file servers, rather than one. MUltiple entity communications, which allow one-to-many and many-to-one communications, are known as multicast communications. This thesis examines some of the ways in which the architectures of computer networks and distributed systems can affect the design and development of multicast communication applications and protocols.To assist in this examination, the thesis presents three contributions. First, a set of classification schemes are developed for use in the description and analysis of various multicast communication strategies. Second, a general set of multicast communication primitives are presented, unrelated to any specific network or distributed system, yet efficiently implementable on a variety of networks. Third, the primitives are used to obtain experimental results for a study ofintranetwork and internetwork multicast communications.Postgraduate Scholarship, The Natural Sciences and Engineering Research Council of Canada: Overseas Research Student Award: the Committee of Vice-Chancellors and Principals of the Universities of the Uni ted Kingdom

    NASA University program management information system, FY 1993

    Get PDF
    The University Program Report, Fiscal Year 1993, provides current information and related statistics for 7682 grants/contracts/cooperative agreements active during the report period. NASA field centers and certain Headquarters program offices provide funds for those R&D activities in universities which contribute to the mission needs of that particular NASA element. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program

    First International Conference on Ada (R) Programming Language Applications for the NASA Space Station, volume 2

    Get PDF
    Topics discussed include: reusability; mission critical issues; run time; expert systems; language issues; life cycle issues; software tools; and computers for Ada
    corecore