35,905 research outputs found

    Demand side load management using a three step optimization methodology

    Get PDF
    In order to keep a proper functional electricity grid and to prevent large investments in the current grid, the creation, transmission and consumption of electricity needs to be controlled and organized in a different way as done nowadays. Smart meters, distributed generation and -storage and demand side management are novel technologies introduced to reach a sustainable, more efficient and reliable electricity supply. Although these technologies are very promising to reach these goals, coordination between these technologies is required. It is therefore expected that ICT is going to play an important role in future smart grids. In this paper, we present the results of our three step control strategy designed to optimize the overall energy efficiency and to increase the amount of generation based on renewable resources with the ultimate goal to reduce the CO2 emission resulting from generation electricity. The focus of this work is on the control algorithms used to reshape the energy demand profile of a large group of buildings and their requirements on the smart grid. In a use case, steering a large group of freezers, we are able to reshape a demand profile full of peaks to a nicely smoothed demand profile, taking into the account the amount of available communication bandwidth and exploiting the available computation power distributed in the grid

    An ARTMAP-incorporated Multi-Agent System for Building Intelligent Heat Management

    Get PDF
    This paper presents an ARTMAP-incorporated multi-agent system (MAS) for building heat management, which aims to maintain the desired space temperature defined by the building occupants (thermal comfort management) and improve energy efficiency by intelligently controlling the energy flow and usage in the building (building energy control). Existing MAS typically uses rule-based approaches to describe the behaviours and the processes of its agents, and the rules are fixed. The incorporation of artificial neural network (ANN) techniques to the agents can provide for the required online learning and adaptation capabilities. A three-layer MAS is proposed for building heat management and ARTMAP is incorporated into the agents so as to facilitate online learning and adaptation capabilities. Simulation results demonstrate that ARTMAP incorporated MAS provides better (automated) energy control and thermal comfort management for a building environment in comparison to its existing rule-based MAS approach
    corecore