7,360 research outputs found

    Adaptation and learning over networks for nonlinear system modeling

    Full text link
    In this chapter, we analyze nonlinear filtering problems in distributed environments, e.g., sensor networks or peer-to-peer protocols. In these scenarios, the agents in the environment receive measurements in a streaming fashion, and they are required to estimate a common (nonlinear) model by alternating local computations and communications with their neighbors. We focus on the important distinction between single-task problems, where the underlying model is common to all agents, and multitask problems, where each agent might converge to a different model due to, e.g., spatial dependencies or other factors. Currently, most of the literature on distributed learning in the nonlinear case has focused on the single-task case, which may be a strong limitation in real-world scenarios. After introducing the problem and reviewing the existing approaches, we describe a simple kernel-based algorithm tailored for the multitask case. We evaluate the proposal on a simulated benchmark task, and we conclude by detailing currently open problems and lines of research.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Influences on the formation and evolution of Physarum polycephalum inspired emergent transport networks

    Get PDF
    The single-celled organism Physarum polycephalum efficiently constructs and minimises dynamical nutrient transport networks resembling proximity graphs in the Toussaint hierarchy. We present a particle model which collectively approximates the behaviour of Physarum. We demonstrate spontaneous transport network formation and complex network evolution using the model and show that the model collectively exhibits quasi-physical emergent properties, allowing it to be considered as a virtual computing material. This material is used as an unconventional method to approximate spatially represented geometry problems by representing network nodes as nutrient sources. We demonstrate three different methods for the construction, evolution and minimisation of Physarum-like transport networks which approximate Steiner trees, relative neighbourhood graphs, convex hulls and concave hulls. We extend the model to adapt population size in response to nutrient availability and show how network evolution is dependent on relative node position (specifically inter-node angle), sensor scaling and nutrient concentration. We track network evolution using a real-time method to record transport network topology in response to global differences in nutrient concentration. We show how Steiner nodes are utilised at low nutrient concentrations whereas direct connections to nutrients are favoured when nutrient concentration is high. The results suggest that the foraging and minimising behaviour of Physarum-like transport networks reflect complex interplay between nutrient concentration, nutrient location, maximising foraging area coverage and minimising transport distance. The properties and behaviour of the synthetic virtual plasmodium may be useful in future physical instances of distributed unconventional computing devices, and may also provide clues to the generation of emergent computation behaviour by Physarum. © Springer Science+Business Media B.V. 2010
    • …
    corecore