420 research outputs found

    Persistent Homology Tools for Image Analysis

    Get PDF
    Topological Data Analysis (TDA) is a new field of mathematics emerged rapidly since the first decade of the century from various works of algebraic topology and geometry. The goal of TDA and its main tool of persistent homology (PH) is to provide topological insight into complex and high dimensional datasets. We take this premise onboard to get more topological insight from digital image analysis and quantify tiny low-level distortion that are undetectable except possibly by highly trained persons. Such image distortion could be caused intentionally (e.g. by morphing and steganography) or naturally in abnormal human tissue/organ scan images as a result of onset of cancer or other diseases. The main objective of this thesis is to design new image analysis tools based on persistent homological invariants representing simplicial complexes on sets of pixel landmarks over a sequence of distance resolutions. We first start by proposing innovative automatic techniques to select image pixel landmarks to build a variety of simplicial topologies from a single image. Effectiveness of each image landmark selection demonstrated by testing on different image tampering problems such as morphed face detection, steganalysis and breast tumour detection. Vietoris-Rips simplicial complexes constructed based on the image landmarks at an increasing distance threshold and topological (homological) features computed at each threshold and summarized in a form known as persistent barcodes. We vectorise the space of persistent barcodes using a technique known as persistent binning where we demonstrated the strength of it for various image analysis purposes. Different machine learning approaches are adopted to develop automatic detection of tiny texture distortion in many image analysis applications. Homological invariants used in this thesis are the 0 and 1 dimensional Betti numbers. We developed an innovative approach to design persistent homology (PH) based algorithms for automatic detection of the above described types of image distortion. In particular, we developed the first PH-detector of morphing attacks on passport face biometric images. We shall demonstrate significant accuracy of 2 such morph detection algorithms with 4 types of automatically extracted image landmarks: Local Binary patterns (LBP), 8-neighbour super-pixels (8NSP), Radial-LBP (R-LBP) and centre-symmetric LBP (CS-LBP). Using any of these techniques yields several persistent barcodes that summarise persistent topological features that help gaining insights into complex hidden structures not amenable by other image analysis methods. We shall also demonstrate significant success of a similarly developed PH-based universal steganalysis tool capable for the detection of secret messages hidden inside digital images. We also argue through a pilot study that building PH records from digital images can differentiate breast malignant tumours from benign tumours using digital mammographic images. The research presented in this thesis creates new opportunities to build real applications based on TDA and demonstrate many research challenges in a variety of image processing/analysis tasks. For example, we describe a TDA-based exemplar image inpainting technique (TEBI), superior to existing exemplar algorithm, for the reconstruction of missing image regions

    Automated framework for robust content-based verification of print-scan degraded text documents

    Get PDF
    Fraudulent documents frequently cause severe financial damages and impose security breaches to civil and government organizations. The rapid advances in technology and the widespread availability of personal computers has not reduced the use of printed documents. While digital documents can be verified by many robust and secure methods such as digital signatures and digital watermarks, verification of printed documents still relies on manual inspection of embedded physical security mechanisms.The objective of this thesis is to propose an efficient automated framework for robust content-based verification of printed documents. The principal issue is to achieve robustness with respect to the degradations and increased levels of noise that occur from multiple cycles of printing and scanning. It is shown that classic OCR systems fail under such conditions, moreover OCR systems typically rely heavily on the use of high level linguistic structures to improve recognition rates. However inferring knowledge about the contents of the document image from a-priori statistics is contrary to the nature of document verification. Instead a system is proposed that utilizes specific knowledge of the document to perform highly accurate content verification based on a Print-Scan degradation model and character shape recognition. Such specific knowledge of the document is a reasonable choice for the verification domain since the document contents are already known in order to verify them.The system analyses digital multi font PDF documents to generate a descriptive summary of the document, referred to as \Document Description Map" (DDM). The DDM is later used for verifying the content of printed and scanned copies of the original documents. The system utilizes 2-D Discrete Cosine Transform based features and an adaptive hierarchical classifier trained with synthetic data generated by a Print-Scan degradation model. The system is tested with varying degrees of Print-Scan Channel corruption on a variety of documents with corruption produced by repetitive printing and scanning of the test documents. Results show the approach achieves excellent accuracy and robustness despite the high level of noise

    Classifiers and machine learning techniques for image processing and computer vision

    Get PDF
    Orientador: Siome Klein GoldensteinTese (doutorado) - Universidade Estadual de Campinas, Instituto da ComputaçãoResumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.DoutoradoEngenharia de ComputaçãoDoutor em Ciência da Computaçã

    Resiliency Assessment and Enhancement of Intrinsic Fingerprinting

    Get PDF
    Intrinsic fingerprinting is a class of digital forensic technology that can detect traces left in digital multimedia data in order to reveal data processing history and determine data integrity. Many existing intrinsic fingerprinting schemes have implicitly assumed favorable operating conditions whose validity may become uncertain in reality. In order to establish intrinsic fingerprinting as a credible approach to digital multimedia authentication, it is important to understand and enhance its resiliency under unfavorable scenarios. This dissertation addresses various resiliency aspects that can appear in a broad range of intrinsic fingerprints. The first aspect concerns intrinsic fingerprints that are designed to identify a particular component in the processing chain. Such fingerprints are potentially subject to changes due to input content variations and/or post-processing, and it is desirable to ensure their identifiability in such situations. Taking an image-based intrinsic fingerprinting technique for source camera model identification as a representative example, our investigations reveal that the fingerprints have a substantial dependency on image content. Such dependency limits the achievable identification accuracy, which is penalized by a mismatch between training and testing image content. To mitigate such a mismatch, we propose schemes to incorporate image content into training image selection and significantly improve the identification performance. We also consider the effect of post-processing against intrinsic fingerprinting, and study source camera identification based on imaging noise extracted from low-bit-rate compressed videos. While such compression reduces the fingerprint quality, we exploit different compression levels within the same video to achieve more efficient and accurate identification. The second aspect of resiliency addresses anti-forensics, namely, adversarial actions that intentionally manipulate intrinsic fingerprints. We investigate the cost-effectiveness of anti-forensic operations that counteract color interpolation identification. Our analysis pinpoints the inherent vulnerabilities of color interpolation identification, and motivates countermeasures and refined anti-forensic strategies. We also study the anti-forensics of an emerging space-time localization technique for digital recordings based on electrical network frequency analysis. Detection schemes against anti-forensic operations are devised under a mathematical framework. For both problems, game-theoretic approaches are employed to characterize the interplay between forensic analysts and adversaries and to derive optimal strategies. The third aspect regards the resilient and robust representation of intrinsic fingerprints for multiple forensic identification tasks. We propose to use the empirical frequency response as a generic type of intrinsic fingerprint that can facilitate the identification of various linear and shift-invariant (LSI) and non-LSI operations

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity
    corecore