160 research outputs found

    Visualizing Sensor Network Coverage with Location Uncertainty

    Full text link
    We present an interactive visualization system for exploring the coverage in sensor networks with uncertain sensor locations. We consider a simple case of uncertainty where the location of each sensor is confined to a discrete number of points sampled uniformly at random from a region with a fixed radius. Employing techniques from topological data analysis, we model and visualize network coverage by quantifying the uncertainty defined on its simplicial complex representations. We demonstrate the capabilities and effectiveness of our tool via the exploration of randomly distributed sensor networks

    Simplicial Homology for Future Cellular Networks

    Get PDF
    Simplicial homology is a tool that provides a mathematical way to compute the connectivity and the coverage of a cellular network without any node location information. In this article, we use simplicial homology in order to not only compute the topology of a cellular network, but also to discover the clusters of nodes still with no location information. We propose three algorithms for the management of future cellular networks. The first one is a frequency auto-planning algorithm for the self-configuration of future cellular networks. It aims at minimizing the number of planned frequencies while maximizing the usage of each one. Then, our energy conservation algorithm falls into the self-optimization feature of future cellular networks. It optimizes the energy consumption of the cellular network during off-peak hours while taking into account both coverage and user traffic. Finally, we present and discuss the performance of a disaster recovery algorithm using determinantal point processes to patch coverage holes

    Coverage Assessment and Target Tracking in 3D Domains

    Get PDF
    Recent advances in integrated electronic devices motivated the use of Wireless Sensor Networks (WSNs) in many applications including domain surveillance and mobile target tracking, where a number of sensors are scattered within a sensitive region to detect the presence of intruders and forward related events to some analysis center(s). Obviously, sensor deployment should guarantee an optimal event detection rate and should reduce coverage holes. Most of the coverage control approaches proposed in the literature deal with two-dimensional zones and do not develop strategies to handle coverage in three-dimensional domains, which is becoming a requirement for many applications including water monitoring, indoor surveillance, and projectile tracking. This paper proposes efficient techniques to detect coverage holes in a 3D domain using a finite set of sensors, repair the holes, and track hostile targets. To this end, we use the concepts of Voronoi tessellation, Vietoris complex, and retract by deformation. We show in particular that, through a set of iterative transformations of the Vietoris complex corresponding to the deployed sensors, the number of coverage holes can be computed with a low complexity. Mobility strategies are also proposed to repair holes by moving appropriately sensors towards the uncovered zones. The tracking objective is to set a non-uniform WSN coverage within the monitored domain to allow detecting the target(s) by the set of sensors. We show, in particular, how the proposed algorithms adapt to cope with obstacles. Simulation experiments are carried out to analyze the efficiency of the proposed models. To our knowledge, repairing and tracking is addressed for the first time in 3D spaces with different sensor coverage schemes

    Unmanned Ground Vehicle navigation and coverage hole patching in Wireless Sensor Networks

    Get PDF
    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A coordinate-free and localization-free WSN that is deployed in an ad-hoc fashion and does not assume the availability of GPS information is considered. The system considered is decentralized and can be self-organized in an event-driven manner where no central controller or global map is required. A single-UGV, single-destination navigation problem is addressed first. The UGV is equipped with a set of wireless listeners that determine the slope of a navigation potential field generated by the wireless sensor and actuator network. The navigation algorithm consists of sensor node level-number assignment that is determined based on a hop-distance from the network destination node and UGV navigation through the potential field created by triplets of actuators in the network. A multi-UGV, multi-destination navigation problem requires a path-planning and task allocation process. UGVs inform the network about their proposed destinations, and the network provides feedback if conflicts are found. Sensor nodes store, share, and communicate to UGVs in order to allocate the navigation tasks. A special case of a single-UGV, multi-destination navigation problem that is equivalent to the well-known Traveling Salesman Problem is discussed. The coverage hole patching process starts after a UGV reaches the hole boundary. For each hole boundary edge, a new node is added along its perpendicular bisector, and the entire hole is patched by adding nodes around the hole boundary edges. The communication complexity and present simulation examples and experimental results are analyzed. Then, a Java-based simulation testbed that is capable of simulating both the centralized and distributed sensor and actuator network algorithms is developed. The laboratory experiment demonstrates the navigation algorithm (single-UGV, single-destination) using Cricket wireless sensors and an actuator network and Pioneer 3-DX robot

    TOPOLOGICAL STRUCTURE OF SPATIALLY-DISTRIBUTED NETWORK CODED INFORMATION

    Get PDF
    In this paper we generalize work using topological methods for testing wireless/sensor network coverage to the problem of covering a geographically-distributed wireless network with linear network coded data. We define the coverage complex, a new type of simplicial complex built on the nodes of the network which captures properties of the data coverage, and use tools from algebraic topology, persistent homology, and matroid theory to study it. The coverage complex shares properties with the Rips complex, however it also suffers from a more diverse variety of potential failures. We extend the standard coverage criteria to account for some of these situations using persistent homology, multi-sheeted localized covers of the space, and Mayer-Vietoris sequences. We also investigate the combinatorial properties of the coverage complex, determining the correspondence between it and the lattice of linear subspaces of a vector space. Finally we present algorithms for computing coverage complexes, present a software package designed to compute and experiment with coverage complexes, and provide a summary of ongoing and future work

    Sheaf Theory as a Foundation for Heterogeneous Data Fusion

    Get PDF
    A major impediment to scientific progress in many fields is the inability to make sense of the huge amounts of data that have been collected via experiment or computer simulation. This dissertation provides tools to visualize, represent, and analyze the collection of sensors and data all at once in a single combinatorial geometric object. Encoding and translating heterogeneous data into common language are modeled by supporting objects. In this methodology, the behavior of the system based on the detection of noise in the system, possible failure in data exchange and recognition of the redundant or complimentary sensors are studied via some related geometric objects. Applications of the constructed methodology are described by two case studies: one from wildfire threat monitoring and the other from air traffic monitoring. Both cases are distributed (spatial and temporal) information systems. The systems deal with temporal and spatial fusion of heterogeneous data obtained from multiple sources, where the schema, availability and quality vary. The behavior of both systems is explained thoroughly in terms of the detection of the failure in the systems and the recognition of the redundant and complimentary sensors. A comparison between the methodology in this dissertation and the alternative methods is described to further verify the validity of the sheaf theory method. It is seen that the method has less computational complexity in both space and time

    Strategies for coverage and focus on event for robotic swarms with limited sensing capabilities

    Get PDF
    We consider the problem of coverage in Robotic Networks: developing an efficient algorithm which is able to perform a deployment in static-obstacle-structured environments focusing on events is our main idea. We are interested on the trade-off between local communication and optimal coverage, therefore we are going to present an algorithm based on article: "Sensor Coverage Robot Swarms Using Local Sensing without Metric Information", using its similar scenario types
    • 

    corecore