92 research outputs found

    Socially Trusted Collaborative Edge Computing in Ultra Dense Networks

    Full text link
    Small cell base stations (SBSs) endowed with cloud-like computing capabilities are considered as a key enabler of edge computing (EC), which provides ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. However, due to the limited computation resources of an individual SBS, providing computation services of high quality to its users faces significant challenges when it is overloaded with an excessive amount of computation workload. In this paper, we propose collaborative edge computing among SBSs by forming SBS coalitions to share computation resources with each other, thereby accommodating more computation workload in the edge system and reducing reliance on the remote cloud. A novel SBS coalition formation algorithm is developed based on the coalitional game theory to cope with various new challenges in small-cell-based edge systems, including the co-provisioning of radio access and computing services, cooperation incentives, and potential security risks. To address these challenges, the proposed method (1) allows collaboration at both the user-SBS association stage and the SBS peer offloading stage by exploiting the ultra dense deployment of SBSs, (2) develops a payment-based incentive mechanism that implements proportionally fair utility division to form stable SBS coalitions, and (3) builds a social trust network for managing security risks among SBSs due to collaboration. Systematic simulations in practical scenarios are carried out to evaluate the efficacy and performance of the proposed method, which shows that tremendous edge computing performance improvement can be achieved.Comment: arXiv admin note: text overlap with arXiv:1010.4501 by other author

    A Game-Theoretic Approach to Coalition Formation in Fog Provider Federations

    Get PDF
    In this paper we deal with the problem of making a set of Fog Infrastructure Providers (FIPs) increase their profits when allocating their resources to process the data generated by IoT applications that need to meet specific QoS targets in face of time-varying workloads. We show that if FIPs cooperate among them, by mutually sharing their workloads and resources, then each one of them can improve its net profit. By using a game-theoretic framework, we study the problem of forming stable coalitions among FIPs. Furthermore, we propose a mathematical optimization model for profit maximization to allocate IoT applications to a set of FIPs, in order to reduce costs and, at the same time, to meet the corresponding QoS targets. Based on this, we propose an algorithm, based on cooperative game theory, that enables each FIP to decide with whom to cooperate in order to increase its profits. The effectiveness of the proposed algorithm is demonstrated through an experimental evaluation considering various workload intensities. The results we obtain from these experiments show the ability of our algorithm to form coalitions of FIPs that are stable and profitable in all the scenarios we consider

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Game theoretical models for clustering and resource sharing in macro-femtocells networks

    Get PDF
    One of the main challenges of cellular network operators is to keep a good network quality for their users. In most cases, network quality decreases in indoor environments causing users to switch from one operator to another. A promising solution to cope with this issue is the deployment of femtocells that are used mainly at homes to enhance the mobile network coverage. In fact, higher penetration of broadband and mobile phones with high requirements of new applications such as video conferencing and internet games are promoting femtocell market. However, the deployment of femtocells in existing macrocell networks is a very challenging task due to the high complexity of the resource allocation. In this thesis, we focus on proposing several solutions to address the resource allocation problem in macro-femtocell networks with dense deployment of femtocells based on clustering techniques. Clustering techniques are used to reduce the resource allocation complexity of dense-femtocell networks since the resources are allocated locally within each cluster. Furthermore, a cluster head is responsible for the allocation of resources to femtocells within the cluster which avoids the co-tier interference. The clustering techniques have been widely used for distributed resource allocation in heterogeneous networks through the use of game theory models. In this work, three distributed resource allocation algorithms based on cooperative and evolutionary games are proposed. In the first part, we discuss the resource allocation problem for the non-dense deployment of femtocells. Toward this goal, a coalitional game is used to incentive femtocells in the formation of clusters. The approach decomposes in: (i) a base station selection algorithm for public users, (ii) a clustering algorithm based on cooperative game theory and (iii) a resource allocation within each cluster based on the PSO technique. Besides, an interference control mechanism enabled femtocells to leave its current cluster when the interference levels are higher than an interference threshold. In the second part, we focus on a fair allocation of resources for macro-femtocell networks. We develop a clustering algorithm based on a cooperative game for non-dense femtocell network. The Shapley value is applied to find the marginal contribution of every femtocell to all the possible groups of femtocells, thus, finding the fair amount of resources to be allocated to each femtocell within a cluster. This solution is only applied for non-dense femtocell deployment due to that the complexity of calculating the Shapley value increases significantly with a large number of femtocells. Stability criteria based on the ε-concept of game theory is utilized to find the set of stable clusters. Finally, the analysis of the resource allocation for dense-femtocell deployment is addressed through an evolutionary game theory (EGT) model. It is assumed that EGT requires bounded rationality from players, this reduces the complexity and allows the dense deployment of femtocells. In addition, we demonstrate that the set of clusters formed with EGT are stable by means of the replicator dynamics. The proposed model also includes system analysis for users with low mobility such as pedestrians and cyclists

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond
    corecore