248 research outputs found

    Fault-tolerance techniques for hybrid CMOS/nanoarchitecture

    Get PDF
    The authors propose two fault-tolerance techniques for hybrid CMOS/nanoarchitecture implementing logic functions as look-up tables. The authors compare the efficiency of the proposed techniques with recently reported methods that use single coding schemes in tolerating high fault rates in nanoscale fabrics. Both proposed techniques are based on error correcting codes to tackle different fault rates. In the first technique, the authors implement a combined two-dimensional coding scheme using Hamming and Bose-Chaudhuri-Hocquenghem (BCH) codes to address fault rates greater than 5. In the second technique, Hamming coding is complemented with bad line exclusion technique to tolerate fault rates higher than the first proposed technique (up to 20). The authors have also estimated the improvement that can be achieved in the circuit reliability in the presence of Don-t Care Conditions. The area, latency and energy costs of the proposed techniques were also estimated in the CMOS domain

    Convergence among Non-Sister Dendritic Branches: An Activity-Controlled Mean to Strengthen Network Connectivity

    Get PDF
    The manner by which axons distribute synaptic connections along dendrites remains a fundamental unresolved issue in neuronal development and physiology. We found in vitro and in vivo indications that dendrites determine the density, location and strength of their synaptic inputs by controlling the distance of their branches from those of their neighbors. Such control occurs through collective branch convergence, a behavior promoted by AMPA and NMDA glutamate receptor activity. At hubs of convergence sites, the incidence of axo-dendritic contacts as well as clustering levels, pre- and post-synaptic protein content and secretion capacity of synaptic connections are higher than found elsewhere. This coupling between synaptic distribution and the pattern of dendritic overlapping results in ‘Economical Small World Network’, a network configuration that enables single axons to innervate multiple and remote dendrites using short wiring lengths. Thus, activity-mediated regulation of the proximity among dendritic branches serves to pattern and strengthen neuronal connectivity

    Constraint logic programming for fault-tolerant distributed systems

    Get PDF
    This paper presents key notions of Constraint Logic Programming (CLP), which is a young programming paradigm oriented toward solving difficult discrete highly combinatorial problems by making active use of constraints on the basis of mechanisms of Logic Programming. Being the subject of intensive research all over the world, CLP has already been used successfully in a large variety of application areas. As one of the important applications where CLP demonstrates its potential, we propose CLP-based procedures of solving the problems of optimal resource and task allocation at the stages of design and operation of Fault-Tolerant Distributed Technical Systems.Peer Reviewe

    Enabling sustainable power distribution networks by using smart grid communications

    Get PDF
    Smart grid modernization enables integration of computing, information and communications capabilities into the legacy electric power grid system, especially the low voltage distribution networks where various consumers are located. The evolutionary paradigm has initiated worldwide deployment of an enormous number of smart meters as well as renewable energy sources at end-user levels. The future distribution networks as part of advanced metering infrastructure (AMI) will involve decentralized power control operations under associated smart grid communications networks. This dissertation addresses three potential problems anticipated in the future distribution networks of smart grid: 1) local power congestion due to power surpluses produced by PV solar units in a neighborhood that demands disconnection/reconnection mechanisms to alleviate power overflow, 2) power balance associated with renewable energy utilization as well as data traffic across a multi-layered distribution network that requires decentralized designs to facilitate power control as well as communications, and 3) a breach of data integrity attributed to a typical false data injection attack in a smart metering network that calls for a hybrid intrusion detection system to detect anomalous/malicious activities. In the first problem, a model for the disconnection process via smart metering communications between smart meters and the utility control center is proposed. By modeling the power surplus congestion issue as a knapsack problem, greedy solutions for solving such problem are proposed. Simulation results and analysis show that computation time and data traffic under a disconnection stage in the network can be reduced. In the second problem, autonomous distribution networks are designed that take scalability into account by dividing the legacy distribution network into a set of subnetworks. A power-control method is proposed to tackle the power flow and power balance issues. Meanwhile, an overlay multi-tier communications infrastructure for the underlying power network is proposed to analyze the traffic of data information and control messages required for the associated power flow operations. Simulation results and analysis show that utilization of renewable energy production can be improved, and at the same time data traffic reduction under decentralized operations can be achieved as compared to legacy centralized management. In the third problem, an attack model is proposed that aims to minimize the number of compromised meters subject to the equality of an aggregated power load in order to bypass detection under the conventionally radial tree-like distribution network. A hybrid anomaly detection framework is developed, which incorporates the proposed grid sensor placement algorithm with the observability attribute. Simulation results and analysis show that the network observability as well as detection accuracy can be improved by utilizing grid-placed sensors. Conclusively, a number of future works have also been identified to furthering the associated problems and proposed solutions

    Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter

    Get PDF
    A large prototype of 1.3m3 was designed and built as a demonstrator of the semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each unit is built of an active layer made of 1m2 Glass Resistive Plate Chamber(GRPC) detector placed inside a cassette whose walls are made of stainless steel. The cassette contains also the electronics used to read out the GRPC detector. The lateral granularity of the active layer is provided by the electronics pick-up pads of 1cm2 each. The cassettes are inserted into a self-supporting mechanical structure built also of stainless steel plates which, with the cassettes walls, play the role of the absorber. The prototype was designed to be very compact and important efforts were made to minimize the number of services cables to optimize the efficiency of the Particle Flow Algorithm techniques to be used in the future ILC experiments. The different components of the SDHCAL prototype were studied individually and strict criteria were applied for the final selection of these components. Basic calibration procedures were performed after the prototype assembling. The prototype is the first of a series of new-generation detectors equipped with a power-pulsing mode intended to reduce the power consumption of this highly granular detector. A dedicated acquisition system was developed to deal with the output of more than 440000 electronics channels in both trigger and triggerless modes. After its completion in 2011, the prototype was commissioned using cosmic rays and particles beams at CERN.Comment: 49 pages, 41 figure
    • 

    corecore