200 research outputs found

    A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions

    Get PDF
    [EN] As the number of potential applications for Unmanned Aerial Vehicles (UAVs) keeps rising steadily, the chances that these devices get close to each other during their flights also increases, causing concerns regarding potential collisions. This paper proposed the Mission Based Collision Avoidance Protocol (MBCAP), a novel UAV collision avoidance protocol applicable to all types of multicopters flying autonomously. It relies on wireless communications in order to detect nearby UAVs, and to negotiate the procedure to avoid any potential collision. Experimental and simulation results demonstrated the validity and effectiveness of the proposed solution, which typically introduces a small overhead in the range of 15 to 42 s for each risky situation successfully handled.This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, under Grant RTI2018-096384-B-I00, and the Universitat Politecnica de Valencia (UPV) under grant number FPI-2017-S1 for the training of PhD researchers.Fabra Collado, FJ.; Zamora-Mero, WJ.; Sangüesa-Escorihuela, JA.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2019). A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions. Sensors. 19(10):1-25. https://doi.org/10.3390/s19102404S1251910Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., & Mohammed, F. (2020). Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change, 153, 119293. doi:10.1016/j.techfore.2018.05.004SESAR Joint Undertakinghttps://www.sesarju.eu/Fabra, F., T. Calafate, C., Cano, J.-C., & Manzoni, P. (2018). MBCAP: Mission Based Collision Avoidance Protocol for UAVs. 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA). doi:10.1109/aina.2018.00090Drone Collision Avoidancehttps://create.arduino.cc/projecthub/anshulsingh163/drone-collision-avoidance-system-0b6002Liu, Z., & Foina, A. G. (2016). Feature article: an autonomous quadrotor avoiding a helicopter in low-altitude flights. IEEE Aerospace and Electronic Systems Magazine, 31(9), 30-39. doi:10.1109/maes.2016.150131Xiang, J., Liu, Y., & Luo, Z. (2016). Flight safety measurements of UAVs in congested airspace. Chinese Journal of Aeronautics, 29(5), 1355-1366. doi:10.1016/j.cja.2016.08.017Lin, Q., Wang, X., & Wang, Y. (2018). Cooperative Formation and Obstacle Avoidance Algorithm for Multi-UAV System in 3D Environment. 2018 37th Chinese Control Conference (CCC). doi:10.23919/chicc.2018.8483113Zhou, X., Yu, X., & Peng, X. (2019). UAV Collision Avoidance Based on Varying Cells Strategy. IEEE Transactions on Aerospace and Electronic Systems, 55(4), 1743-1755. doi:10.1109/taes.2018.2875556Kim, H., & Ben-Othman, J. (2018). A Collision-Free Surveillance System Using Smart UAVs in Multi Domain IoT. IEEE Communications Letters, 22(12), 2587-2590. doi:10.1109/lcomm.2018.2875477Wang, M., Voos, H., & Su, D. (2018). Robust Online Obstacle Detection and Tracking for Collision-Free Navigation of Multirotor UAVs in Complex Environments. 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). doi:10.1109/icarcv.2018.8581330Ma, L. (2018). Cooperative Target Tracking using a Fleet of UAVs with Collision and Obstacle Avoidance. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC). doi:10.1109/icstcc.2018.8540717Chen, P.-H., & Lee, C.-Y. (2018). UAVNet: An Efficient Obstacel Detection Model for UAV with Autonomous Flight. 2018 International Conference on Intelligent Autonomous Systems (ICoIAS). doi:10.1109/icoias.2018.8494201Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory, 87, 170-190. doi:10.1016/j.simpat.2018.06.009Accurate and real-time multi-UAV simulationhttps://bitbucket.org/frafabco/ardusim/src/master/MAVLink Micro Air Vehicle Communication Protocolhttp://qgroundcontrol.org/mavlink/startGorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. doi:10.1016/j.rse.2017.06.031NS-2 The Network Simulatorhttp://nsnam.sourceforge.net/wiki/index.php/Main_PageOMNeT++ Discrete Event Simulatorhttps://omnetpp.org/Quaternium, Home of the Longest Flight Time Hybrid Dronehttp://www.quaternium.com/Gauss-Markov Mobilityhttps://doc.omnetpp.org/inet/api-current/neddoc/inet.mobility.single.GaussMarkovMobility.htmlFerrera, E., Alcántara, A., Capitán, J., Castaño, A., Marrón, P., & Ollero, A. (2018). Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments. Sensors, 18(12), 4101. doi:10.3390/s1812410

    Optimal Multi-UAV Trajectory Planning for Filming Applications

    Get PDF
    Teams of multiple Unmanned Aerial Vehicles (UAVs) can be used to record large-scale outdoor scenarios and complementary views of several action points as a promising system for cinematic video recording. Generating the trajectories of the UAVs plays a key role, as it should be ensured that they comply with requirements for system dynamics, smoothness, and safety. The rise of numerical methods for nonlinear optimization is finding a ourishing field in optimization-based approaches to multi- UAV trajectory planning. In particular, these methods are rather promising for video recording applications, as they enable multiple constraints and objectives to be formulated, such as trajectory smoothness, compliance with UAV and camera dynamics, avoidance of obstacles and inter-UAV con icts, and mutual UAV visibility. The main objective of this thesis is to plan online trajectories for multi-UAV teams in video applications, formulating novel optimization problems and solving them in real time. The thesis begins by presenting a framework for carrying out autonomous cinematography missions with a team of UAVs. This framework enables media directors to design missions involving different types of shots with one or multiple cameras, running sequentially or concurrently. Second, the thesis proposes a novel non-linear formulation for the challenging problem of computing optimal multi-UAV trajectories for cinematography, integrating UAV dynamics and collision avoidance constraints, together with cinematographic aspects such as smoothness, gimbal mechanical limits, and mutual camera visibility. Lastly, the thesis describes a method for autonomous aerial recording with distributed lighting by a team of UAVs. The multi-UAV trajectory optimization problem is decoupled into two steps in order to tackle non-linear cinematographic aspects and obstacle avoidance at separate stages. This allows the trajectory planner to perform in real time and to react online to changes in dynamic environments. It is important to note that all the methods in the thesis have been validated by means of extensive simulations and field experiments. Moreover, all the software components have been developed as open source.Los equipos de vehículos aéreos no tripulados (UAV) son sistemas prometedores para grabar eventos cinematográficos, en escenarios exteriores de grandes dimensiones difíciles de cubrir o para tomar vistas complementarias de diferentes puntos de acción. La generación de trayectorias para este tipo de vehículos desempeña un papel fundamental, ya que debe garantizarse que se cumplan requisitos dinámicos, de suavidad y de seguridad. Los enfoques basados en la optimización para la planificación de trayectorias de múltiples UAVs se pueden ver beneficiados por el auge de los métodos numéricos para la resolución de problemas de optimización no lineales. En particular, estos métodos son bastante prometedores para las aplicaciones de grabación de vídeo, ya que permiten formular múltiples restricciones y objetivos, como la suavidad de la trayectoria, el cumplimiento de la dinámica del UAV y de la cámara, la evitación de obstáculos y de conflictos entre UAVs, y la visibilidad mutua. El objetivo principal de esta tesis es planificar trayectorias para equipos multi-UAV en aplicaciones de vídeo, formulando novedosos problemas de optimización y resolviéndolos en tiempo real. La tesis comienza presentando un marco de trabajo para la realización de misiones cinematográficas autónomas con un equipo de UAVs. Este marco permite a los directores de medios de comunicación diseñar misiones que incluyan diferentes tipos de tomas con una o varias cámaras, ejecutadas de forma secuencial o concurrente. En segundo lugar, la tesis propone una novedosa formulación no lineal para el difícil problema de calcular las trayectorias óptimas de los vehículos aéreos no tripulados en cinematografía, integrando en el problema la dinámica de los UAVs y las restricciones para evitar colisiones, junto con aspectos cinematográficos como la suavidad, los límites mecánicos del cardán y la visibilidad mutua de las cámaras. Por último, la tesis describe un método de grabación aérea autónoma con iluminación distribuida por un equipo de UAVs. El problema de optimización de trayectorias se desacopla en dos pasos para abordar los aspectos cinematográficos no lineales y la evitación de obstáculos en etapas separadas. Esto permite al planificador de trayectorias actuar en tiempo real y reaccionar en línea a los cambios en los entornos dinámicos. Es importante señalar que todos los métodos de la tesis han sido validados mediante extensas simulaciones y experimentos de campo. Además, todos los componentes del software se han desarrollado como código abierto

    Continuous Autonomous UAV Inspection for FPSO vessels

    Get PDF
    This Master's thesis represents the preliminary design study and proposes the unmanned aerial vehicle (UAV) -based inspection framework, comprising several multirotors with automatic charging and deployment for 24/7 integrity inspection tasks. This project has three main topics. First one describes the operational environment and existing regulations that cover use of UAVs. It forms the basis for proposal of the relevant use-case scenarios. Third part comprises two chapters, where design of concept and framework is being based on the previous factors. It shows that before implementation of fully autonomous inspection system, there is a need to cover both regulatory and technical gaps. It can be explained by the fact that there does not exist any autonomous inspection system today. Thus, this project can be seen as a base for future development of the UAV-based inspection system, as it focuses on creation of a general framework

    System Architectures for Cooperative Teams of Unmanned Aerial Vehicles Interacting Physically with the Environment

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become quite a useful tool for a wide range of applications, from inspection & maintenance to search & rescue, among others. The capabilities of a single UAV can be extended or complemented by the deployment of more UAVs, so multi-UAV cooperative teams are becoming a trend. In that case, as di erent autopilots, heterogeneous platforms, and application-dependent software components have to be integrated, multi-UAV system architectures that are fexible and can adapt to the team's needs are required. In this thesis, we develop system architectures for cooperative teams of UAVs, paying special attention to applications that require physical interaction with the environment, which is typically unstructured. First, we implement some layers to abstract the high-level components from the hardware speci cs. Then we propose increasingly advanced architectures, from a single-UAV hierarchical navigation architecture to an architecture for a cooperative team of heterogeneous UAVs. All this work has been thoroughly tested in both simulation and eld experiments in di erent challenging scenarios through research projects and robotics competitions. Most of the applications required physical interaction with the environment, mainly in unstructured outdoors scenarios. All the know-how and lessons learned throughout the process are shared in this thesis, and all relevant code is publicly available.Los vehículos aéreos no tripulados (UAVs, del inglés Unmanned Aerial Vehicles) se han convertido en herramientas muy valiosas para un amplio espectro de aplicaciones, como inspección y mantenimiento, u operaciones de rescate, entre otras. Las capacidades de un único UAV pueden verse extendidas o complementadas al utilizar varios de estos vehículos simultáneamente, por lo que la tendencia actual es el uso de equipos cooperativos con múltiples UAVs. Para ello, es fundamental la integración de diferentes autopilotos, plataformas heterogéneas, y componentes software -que dependen de la aplicación-, por lo que se requieren arquitecturas multi-UAV que sean flexibles y adaptables a las necesidades del equipo. En esta tesis, se desarrollan arquitecturas para equipos cooperativos de UAVs, prestando una especial atención a aplicaciones que requieran de interacción física con el entorno, cuya naturaleza es típicamente no estructurada. Primero se proponen capas para abstraer a los componentes de alto nivel de las particularidades del hardware. Luego se desarrollan arquitecturas cada vez más avanzadas, desde una arquitectura de navegación para un único UAV, hasta una para un equipo cooperativo de UAVs heterogéneos. Todo el trabajo ha sido minuciosamente probado, tanto en simulación como en experimentos reales, en diferentes y complejos escenarios motivados por proyectos de investigación y competiciones de robótica. En la mayoría de las aplicaciones se requería de interacción física con el entorno, que es normalmente un escenario en exteriores no estructurado. A lo largo de la tesis, se comparten todo el conocimiento adquirido y las lecciones aprendidas en el proceso, y el código relevante está publicado como open-source

    Design and Test of a UAV Swarm Architecture over a Mesh Ad-Hoc Network

    Get PDF
    The purpose of this research was to develop a testable swarm architecture such that the swarm of UAVs collaborate as a team rather than acting as several independent vehicles. Commercial-off-the-shelf (COTS) components were used as they were low-cost, readily available, and previously proven to work with at least two networked UAVs. Initial testing was performed via software-in-the-loop (SITL) demonstrating swarming of three simulated multirotor aircraft, then transitioned to real hardware. The architecture was then tested in an outdoor nylon netting enclosure. Command and control (C2) was provided by software implementing an enhanced version of Reynolds’ flocking rules via an onboard companion computer, and UDP multicast messages over a W-Fi mesh ad-hoc network. Experimental results indicate a standard deviation between vehicles of two meters or less, at airspeeds up to two meters per second. This aligns with navigation instrumentation error, permitting safe operation of multiple vehicles within five meters of each other. Qualitative observations indicate this architecture is robust enough to handle more aircraft, pass additional sensor data, and incorporate different swarming algorithms and missions

    Flight coordination solutions for multirotor unmanned aerial vehicles

    Full text link
    [EN] As the popularity and the number of Unmanned Aerial Vehicles (UAVs) increases, new protocols are needed to coordinate them when flying without direct human control, and to avoid that these UAVs collide with each other. Testing such novel protocols on real UAVs is a complex procedure that requires investing much time, money and research efforts. Hence, it becomes necessary to first test the developed solutions using simulation. Unfortunately, existing tools present significant limitations: some of them only simulate accurately the flight behavior of a single UAV, while some other simulators can manage several UAVs simultaneously, but not in real time, thus losing accuracy regarding the mobility pattern of the UAV. In this work we address such problem by introducing Arducopter Simulator (ArduSim), a novel simulation platform that allows controlling in soft real-time the flight and communications of multiple UAVs, being the developed protocols directly portable to real devices. Moreover, ArduSim includes a realistic model for the WiFi communications link between UAVs, which was proposed based on real experiments. The chances that two UAVs get close to each other during their flights is increasing as more and more of them populate our skies, causing concerns regarding potential collisions. Therefore, this thesis also proposes the Mission Based Collision Avoidance Protocol (MBCAP), a novel UAV collision avoidance protocol applicable to all types of multicopters flying autonomously. It relies on wireless communications in order to detect nearby UAVs, and to negotiate the procedure to avoid any potential collision. Experimental and simulation results demonstrate the validity and effectiveness of the proposed solution, which typically introduces a small overhead in the range of 15 to 42 seconds for each risky situation successfully handled. The previous solution aims at UAVs performing independent flights, but they can also form a swarm, where more constraints have to be met to avoid collisions among them, and to allow them to complete their task efficiently. Deploying an UAV swarm instead of a single UAV can provide additional benefits when, for example, cargo carrying requirements exceed the lifting power of a single UAV, or when the deployment of several UAVs simultaneously can accelerate the accomplishment of the mission, and broaden the covered area. To this aim, in this work we present the Mission-based UAV Swarm Coordination Protocol (MUSCOP), a solution that allows multiple UAVs to perfectly coordinate their flight when performing planned missions. Experimental results show that the proposed protocol is able to achieve a high degree of swarm cohesion independently of the flight formation adopted, and even in the presence of very lossy channels, achieving minimal synchronization delays and very low position offsets with regard to the ideal case. Currently, there are some other scenarios, such as search and rescue operations, where the deployment of manually guided swarms of UAVs can be necessary. In such cases, the pilot's commands are unknown a priori (unpredictable), meaning that the UAVs must respond in near real-time to the movements of the leader UAV in order to maintain swarm consistency. Hence, in this thesis we also propose the FollowMe protocol for the coordination of UAVs in a swarm where the swarm leader is controlled by a real pilot, and the other UAVs must follow it in real-time to maintain swarm cohesion. Simulation results show the validity of the proposed swarm coordination protocol, detailing the responsiveness limits of our solution, and finding the minimum distances between UAVs to avoid collisions.[ES] A medida que la popularidad de los Vehículos Aéreos No Tripulados (VANTs) se incrementa, también se hacen necesarios nuevos protocolos para coordinarlos en vuelos sin control humano directo, y para evitar que colisionen entre sí. Probar estos nuevos protocolos en VANTs reales es un proceso complejo que requiere invertir mucho tiempo, dinero y esfuerzo investigador. Por lo tanto, es necesario probar en simulación las soluciones previamente implementadas. Lamentablemente, las herramientas actuales tienen importantes limitaciones: algunas simulan con precisión el vuelo de un único VANT, mientras que otros simuladores pueden gestionar varios VANTs simultáneamente aunque no en tiempo real, perdiendo por lo tanto precisión en el patrón de movilidad del VANT. En este trabajo abordamos este problema introduciendo Arducopter Simulator (ArduSim), una nueva plataforma de simulación que permite controlar en tiempo real el vuelo y la comunicación entre múltiples VANTs, permitiendo llevar los protocolos desarrollados a dispositivos reales con facilidad. Además, ArduSim incluye un modelo realista de un enlace de comunicaciones WiFi entre VANTs, el cual está basado en el resultado obtenido de experimentos con VANTs reales. La posibilidad de que dos VANTs se aproximen entre sí durante el vuelo se incrementa a medida que hay más aeronaves de este tipo surcando los cielos, introduciendo peligro por posibles colisiones. Por ello, esta tesis propone Mission Based Collision Avoidance Protocol (MBCAP), un nuevo protocolo de evitación de colisiones para VANTs aplicable a todo tipo de multicópteros mientras vuelan autónomamente. MBCAP utiliza comunicaciones inalámbricas para detectar VANTs cercanos y para negociar el proceso de evitación de la colisión. Los resultados de simulaciones y experimentos reales demuestran la validez y efectividad de la solución propuesta, que introduce un pequeño aumento del tiempo de vuelo de entre 15 y 42 segundos por cada situación de riesgo correctamente resuelta. La solución anterior está orientada a VANTs que realizan vuelos independientes, pero también pueden formar un enjambre, donde hay que cumplir más restricciones para evitar que colisionen entre sí, y para que completen la tarea de forma eficiente. Desplegar un enjambre de VANTs en vez de uno solo proporciona beneficios adicionales cuando, por ejemplo, la necesidad de carga excede la capacidad de elevación de un único VANT, o cuando al desplegar varios VANTs simultáneamente se acelera la misión y se cubre un área mayor. Con esta finalidad, en este trabajo presentamos el protocolo Mission-based UAV Swarm Coordination Protocol (MUSCOP), una solución que permite a varios VANTs coordinar perfectamente el vuelo mientras realizan misiones planificadas. Los resultados experimentales muestran que el protocolo propuesto permite al enjambre alcanzar un grado de cohesión elevado independientemente de la formación de vuelo adoptada, e incluso en presencia de un canal de comunicación con muchas pérdidas, consiguiendo retardos en la sincronización insignificantes y desfases mínimos en la posición con respecto al caso ideal. Actualmente hay otros escenarios, como las operaciones de búsqueda y rescate, donde el despliegue de enjambres de VANTs guiados manualmente puede ser necesario. En estos casos, las órdenes del piloto son desconocidas a priori (impredecibles), lo que significa que los VANTs deben responder prácticamente en tiempo real a los movimientos del VANT líder para mantener la consistencia del enjambre. Por ello, en esta tesis proponemos el protocolo FollowMe para la coordinación de VANTs en un enjambre donde el líder es controlado por un piloto, y el resto de VANTs lo siguen en tiempo real para mantener la cohesión del enjambre. Las simulaciones muestran la validez del protocolo de coordinación de enjambres propuesto, detallando los límites de la solución, y definiendo la distancia mínima entre VANTs para evita[CA] A mesura que la popularitat dels Vehicles Aeris No Tripulats (VANTs) s'incrementa, també es fan necessaris nous protocols per a coordinar-los en vols sense control humà directe, i per a evitar que col·lisionen entre si. Provar aquests nous protocols en VANTs reals és un procés complex que requereix invertir molt de temps, diners i esforç investigador. Per tant, és necessari provar en simulació les solucions prèviament implementades. Lamentablement, les eines actuals tenen importants limitacions: algunes simulen amb precisió el vol d'un únic VANT, mentre que altres simuladors poden gestionar diversos VANTs simultàniament encara que no en temps real, perdent per tant precisió en el patró de mobilitat del VANT. En aquest treball abordem aquest problema introduint Arducopter Simulator (ArduSim), una nova plataforma de simulació que permet controlar en temps real el vol i la comunicació entre múltiples VANTs, permetent portar els protocols desenvolupats a dispositius reals amb facilitat. A més, ArduSim inclou un model realista d'un enllaç de comunicacions WiFi entre VANTs, que està basat en el resultat obtingut d'experiments amb VANTs reals. La possibilitat que dues VANTs s'aproximen entre si durant el vol s'incrementa a mesura que hi ha més aeronaus d'aquest tipus solcant els cels, introduint perill per possibles col·lisions. Per això, aquesta tesi proposa Mission Based Collision Avoidance Protocol (MBCAP), un nou protocol d'evitació de col·lisions per a VANTs aplicable a tota mena de multicòpters mentre volen autònomament. MBCAP utilitza comunicacions sense fils per a detectar VANTs pròxims i per a negociar el procés d'evitació de la col·lisió. Els resultats de simulacions i experiments reals demostren la validesa i efectivitat de la solució proposada, que introdueix un xicotet augment del temps de vol de entre 15 i 42 segons per cada situació de risc correctament resolta. La solució anterior està orientada a VANTs que realitzen vols independents, però també poden formar un eixam, on cal complir més restriccions per a evitar que col·lisionen entre si, i perquè completen la tasca de forma eficient. Desplegar un eixam de VANTs en comptes d'un només proporciona beneficis addicionals quan, per exemple, la necessitat de càrrega excedeix la capacitat d'elevació d'un únic VANT, o quan en desplegar diversos VANTs simultàniament s'accelera la missió i es cobreix una àrea major. Amb aquesta finalitat, en aquest treball presentem el protocol Mission-based UAV Swarm Coordination Protocol (MUSCOP), una solució que permet a diversos VANTs coordinar perfectament el vol mentre realitzen missions planificades. Els resultats experimentals mostren que el protocol proposat permet a l'eixam aconseguir un grau de cohesió elevat independentment de la formació de vol adoptada, i fins i tot en presència d'un canal de comunicació amb moltes pèrdues, aconseguint retards en la sincronització insignificants i desfasaments mínims en la posició respecte al cas ideal. Actualment hi ha altres escenaris, com les operacions de cerca i rescat, on el desplegament d'eixams de VANTs guiats manualment pot ser necessari. En aquests casos, les ordres del pilot són desconegudes a priori (impredictibles), el que significa que els VANTs han de respondre pràcticament en temps real als moviments del VANT líder per a mantindre la consistència de l'eixam. Per això, en aquesta tesi proposem el protocol FollowMe per a la coordinació de VANTs en un eixam on el líder és controlat per un pilot, i la resta de VANTs ho segueixen en temps real per a mantindre la cohesió de l'eixam. Les simulacions mostren la validesa del protocol de coordinació d'eixams proposat, detallant els límits de la solució, i definint la distància mínima entre VANTs per a evitar col·lisions.Fabra Collado, FJ. (2020). Flight coordination solutions for multirotor unmanned aerial vehicles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147857TESI

    Motion Planning of UAV Swarm: Recent Challenges and Approaches

    Get PDF
    The unmanned aerial vehicle (UAV) swarm is gaining massive interest for researchers as it has huge significance over a single UAV. Many studies focus only on a few challenges of this complex multidisciplinary group. Most of them have certain limitations. This paper aims to recognize and arrange relevant research for evaluating motion planning techniques and models for a swarm from the viewpoint of control, path planning, architecture, communication, monitoring and tracking, and safety issues. Then, a state-of-the-art understanding of the UAV swarm and an overview of swarm intelligence (SI) are provided in this research. Multiple challenges are considered, and some approaches are presented. Findings show that swarm intelligence is leading in this era and is the most significant approach for UAV swarm that offers distinct contributions in different environments. This integration of studies will serve as a basis for knowledge concerning swarm, create guidelines for motion planning issues, and strengthens support for existing methods. Moreover, this paper possesses the capacity to engender new strategies that can serve as the grounds for future work

    Onboard Robust Nonlinear Control for Multiple Multirotor UAVs

    Get PDF
    In this thesis, we focus on developing and validating onboard robust nonlinear control approaches for multiple multirotor unmanned aerial vehicles (UAVs), for the promise of achieving nontrivial tasks, such as path following with aggressive maneuvers, navigation in complex environments with obstacles, and formation in group. To fulfill these challenging missions, the first concern comes with the stability of flight control for the aggressive UAV maneuvers with large tilted angles. In addition, robustness of control is highly desired in order to lead the multirotor UAVs to safe and accurate performance under disturbances. Furthermore, efficiency of control algorithm is a crucial element for the onboard implementation with limited computational capability. Finally, the potential to simultaneously control a group of UAVs in a stable fashion is required. All of these concerns motivate our work in this thesis in the following aspects. We first propose the problem of robust control for the nontrivial maneuvers of a multirotor UAV under disturbances. A complete framework is developed to enable the UAV to achieve the challenging tasks, which consists of a nonlinear attitude controller based on the solution of global output regulation problems for the rigid body rotations SO(3), a backstepping-like position controller, a six-dimensional (6D) wrench observer to estimate the unknown force and torque disturbances, and an online trajectory planner based on a model predictive control (MPC) method. We prove the strong convergence properties of the proposed method both in theory and via intensive real-robot experiments of aggressive waypoint navigation and large-tilted path following tasks in the presence of external disturbances, e.g. wind gusts. Secondly, we propose the problem of autonomous navigation of a multirotor UAV in complex scenarios. We present an effective and robust control approach, namely a fast MPC method with the inclusion of nonlinear obstacle avoiding constraints, and implement it onboard the UAV at 50Hz. The developed approach enables the navigation for a multirotor UAV in 3D environments with multiple obstacles, by autonomously deciding to fly over or around the randomly located obstacles. The third problem that is addressed in our work is formation control for a group of multirotor UAVs. We solve this problem by proposing a distributed formation control algorithm for multiple UAVs based on the solution of retraction balancing problem. The algorithm brings the whole group of UAVs simultaneously to a prescribed submanifold that determines the formation shape in an asymptotically stable fashion in 2D and 3D environments. We validate our proposed algorithm via a series of hardware-in-the-loop simulations and real-robot experiments in various formation cases of arbitrary time-varying (e.g. expanding, shrinking or moving) shapes. In the actual experiments, up to 4 multirotors have been implemented to form arbitrary triangular, rectangular and circular shapes drawn by the operator via a human-robot-interaction device. We have also carried out virtual tests using up to 6 onboard computers to achieve a spherical formation and a formation moving through obstacles.In dieser Arbeit konzentrieren wir uns auf die Entwicklung und Validierung von robusten nichtlinearen On-Bord Steuerungsansatzen für mehrere unbemannte Multirotor-Luftfahrzeuge (UAVs), mit dem Ziel, nicht triviale Aufgaben zu erledigen wie z.B. Wegfolge mit aggressiven Manovern, Navigation in komplexen Umgebungen mit Hindernissen und Formationsflug in einer Gruppe. Um diese anspruchsvollen Missionen zu erfullen liegt unser Hauptaugenmerk bei der Stabilität der Flugsteuerung für aggressive UAV Manöver mit steilen Lagewinkeln. Des weiteren ist Kontroll-robustheit sehr wünschenswert, um die Multirotor-UAVs unter Beeinflussung sicher und genau zu steuern. Daruber hinaus ist die Effizienz des Kontrollalgorithmus ein wichtiges Element für die Onboard-Implementierung mit eingeschrankter Rechenfähigkeit. Abschliessend ist das Potenzial, gleichzeitig eine Gruppe von UAVs in stabiler Weise zu kontrollieren, erforderlich. All dies motiviert uns zur Arbeit an den folgenden Aspekten: Zuerst behandeln wir das Problem der robusten Steuerung nichttrivialer Manöver eines Multirotor UAV unter Störeinfluss. Ein komplettes Framework wird entwickelt, welches dem UAV ermöglicht diese anspruchsvollen Aufgaben zu bewältigen. Es beinhaltet einem nichtlinearen Lageregler, basierend auf der Lösung von globalen Ausgangsrege lungsproblemen für Starrkörperrotationen SO(3), einem backstepping basierten Positionsregler, einen sechsdimensionalen (6D) wrench observer um die unbekannten Kraftund Drehmomenteinflusse zu schätzen, sowie einem Online-Trajektorienplaner basierend auf Model Predictive Control (MPC). Wir weisen die starken Konvergenzcharakteristiken der vorgeschlagenen Methode nach, sowohl in der Theorie als auchmittels intensiver Real-roboter-Experimente, mit aggressiver Wegpunktnavigation und Wegfindungsaufgaben in extremer Fluglage in Gegenwart externer Einflüsse, z.B. Windböen. Als nächstes bearbeiten wir das Problem der autonomen Navigation eines Multirotor UAV in komplexen Szenarien. Wir stellen einen effektiven und robusten Steuerungsansatz dar, nämlich eine schnelle MPC-Methode mit der Einbeziehung von nichtlinearer Einschränkungen zur Hindernisvermeidung, und implmenetieren diese an Bord des UAV mit 50Hz. Der entwickelte Ansatz ermöglicht die Navigation eines Multirotor UAVs in 3D-Umgebungen mit mehreren Hindernissen, wobei autonom entschieden wir, über oder um die zufällig gelegenen Hindernisse zu fliegen. Das dritte Problem, das in unserer Arbeit angesprochen wird, ist die Bildungssteuerung für eine Gruppe von Multirotor UAVs. Wir lösen dieses Problem, indem wir einen verteilten Formationskontrollalgorithmus für mehrere UAVs auf der Grundlage der Lösung des Retraction Balancing Problems vorschlagen. Der Algorithmus bringt die ganze Gruppe von UAVs gleichzeitig auf eine vorgeschriebene Untermanigfaltigkeit, welche die Formation in asymtotisch stabiler Weise in 2D- und 3D-Umgebungen bestimmt. Wir validieren unseren vorgeschlagenen Algorithmus uber eine Reihe von Hardware-in-the- ¨ Loop-Simulationen und Real-Roboter-Experimente mit verschiedenen Formationsvarianten in beliebigen zeitveränderlichen (z. B. expandierenden, schrumpfenden oder bewegten) Formen. In den eigentlichen Experimenten wurden bis zu 4 Multirotoren eingesetzt, um beliebige dreieckige, rechteckige und kreisförmige Formen zu bilden, die vom Bediener über eine Mensch-Roboter-Interaktionsvorrichtung vorgezeichnet wurden. Wir haben auch virtuelle Tests mit bis zu 6 Onboard-Computern durchgeführt, um eine sphärische Formation und eine Formation zu erreichen, die sich durch Hindernisse. bewegt
    corecore