323 research outputs found

    Heart-like fair queuing algorithms (HLFQA)

    Get PDF
    We propose a new family of fair, work conserving traffic scheduling mechanisms that imitate the behavior of the human heart in the cardiovascular system. The algorithms have MAX (where MAX is the maximum packet size) fairness and O(log N) complexity and thus compare favorably with existing algorithms. The algorithms are simple enough to be implemented in hardwar

    Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks

    Get PDF
    The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time. To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm based on the Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path fair resource allocation problem in a distributed SDN control architecture. Our ADMM-based algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances at scale

    Dynamic bandwidth allocation in multi-class IP networks using utility functions.

    Get PDF
    PhDAbstact not availableFujitsu Telecommunications Europe Lt

    Traffic engineering in dynamic optical networks

    Get PDF
    Traffic Engineering (TE) refers to all the techniques a Service Provider employs to improve the efficiency and reliability of network operations. In IP over Optical (IPO) networks, traffic coming from upper layers is carried over the logical topology defined by the set of established lightpaths. Within this framework then, TE techniques allow to optimize the configuration of optical resources with respect to an highly dynamic traffic demand. TE can be performed with two main methods: if the demand is known only in terms of an aggregated traffic matrix, the problem of automatically updating the configuration of an optical network to accommodate traffic changes is called Virtual Topology Reconfiguration (VTR). If instead the traffic demand is known in terms of data-level connection requests with sub-wavelength granularity, arriving dynamically from some source node to any destination node, the problem is called Dynamic Traffic Grooming (DTG). In this dissertation new VTR algorithms for load balancing in optical networks based on Local Search (LS) techniques are presented. The main advantage of using LS is the minimization of network disruption, since the reconfiguration involves only a small part of the network. A comparison between the proposed schemes and the optimal solutions found via an ILP solver shows calculation time savings for comparable results of network congestion. A similar load balancing technique has been applied to alleviate congestion in an MPLS network, based on the efficient rerouting of Label-Switched Paths (LSP) from the most congested links to allow a better usage of network resources. Many algorithms have been developed to deal with DTG in IPO networks, where most of the attention is focused on optimizing the physical resources utilization by considering specific constraints on the optical node architecture, while very few attention has been put so far on the Quality of Service (QoS) guarantees for the carried traffic. In this thesis a novel Traffic Engineering scheme is proposed to guarantee QoS from both the viewpoint of service differentiation and transmission quality. Another contribution in this thesis is a formal framework for the definition of dynamic grooming policies in IPO networks. The framework is then specialized for an overlay architecture, where the control plane of the IP and optical level are separated, and no information is shared between the two. A family of grooming policies based on constraints on the number of hops and on the bandwidth sharing degree at the IP level is defined, and its performance analyzed in both regular and irregular topologies. While most of the literature on DTG problem implicitly considers the grooming of low-speed connections onto optical channels using a TDM approach, the proposed grooming policies are evaluated here by considering a realistic traffic model which consider a Dynamic Statistical Multiplexing (DSM) approach, i.e. a single wavelength channel is shared between multiple IP elastic traffic flows

    Fluid flow queue models for fixed-mobile network evaluation

    Get PDF
    A methodology for fast and accurate end-to-end KPI, like throughput and delay, estimation is proposed based on the service-centric traffic flow analysis and the fluid flow queuing model named CURSA-SQ. Mobile network features, like shared medium and mobility, are considered defining the models to be taken into account such as the propagation models and the fluid flow scheduling model. The developed methodology provides accurate computation of these KPIs, while performing orders of magnitude faster than discrete event simulators like ns-3. Finally, this methodology combined to its capacity for performance estimation in MPLS networks enables its application for near real-time converged fixed-mobile networks operation as it is proven in three use case scenarios

    Flowtune: Flowlet Control for Datacenter Networks

    Get PDF
    Rapid convergence to a desired allocation of network resources to endpoint traffic has been a long-standing challenge for packet-switched networks. The reason for this is that congestion control decisions are distributed across the endpoints, which vary their offered load in response to changes in application demand and network feedback on a packet-by-packet basis. We propose a different approach for datacenter networks, flowlet control, in which congestion control decisions are made at the granularity of a flowlet, not a packet. With flowlet control, allocations have to change only when flowlets arrive or leave. We have implemented this idea in a system called Flowtune using a centralized allocator that receives flowlet start and end notifications from endpoints. The allocator computes optimal rates using a new, fast method for network utility maximization, and updates endpoint congestion-control parameters. Experiments show that Flowtune outperforms DCTCP, pFabric, sfqCoDel, and XCP on tail packet delays in various settings, converging to optimal rates within a few packets rather than over several RTTs. Our implementation of Flowtune handles 10.4x more throughput per core and scales to 8x more cores than Fastpass, for an 83-fold throughput gain
    • 

    corecore