64,659 research outputs found

    Comparative Study of Adaptive Beam-Steering and Adaptive Modulation-Assisted Dynamic Channel Allocation Algorithms

    No full text
    Abstract—A range of dynamic channel allocation (DCA) algorithms, namely, distributed control and locally distributed control assisted DCA arrangements, are studied comparatively. The so-called locally optimized least interference algorithm (LOLIA) emerges as one of the best candidates for future mobile systems, supporting more than twice the number of subscribers in comparison to conventional fixed channel allocation (FCA). It can also cope with unexpected large increases in teletraffic demands while requiring no tedious frequency planning. This is achieved at the cost of more complex call setup and control, and the requirement of fast backbone networks for base station–base station signalling. Adaptive antennas are shown to significantly enhance the capacity of both the LOLIA and FCA-based networks, especially when used in conjunction with adaptive modulation techniques. Index Terms—Adaptive arrays, adaptive modulation, beam steering, dynamic channel allocation (DCA), smart antennas, wireless networking

    Distributive Network Utility Maximization (NUM) over Time-Varying Fading Channels

    Full text link
    Distributed network utility maximization (NUM) has received an increasing intensity of interest over the past few years. Distributed solutions (e.g., the primal-dual gradient method) have been intensively investigated under fading channels. As such distributed solutions involve iterative updating and explicit message passing, it is unrealistic to assume that the wireless channel remains unchanged during the iterations. Unfortunately, the behavior of those distributed solutions under time-varying channels is in general unknown. In this paper, we shall investigate the convergence behavior and tracking errors of the iterative primal-dual scaled gradient algorithm (PDSGA) with dynamic scaling matrices (DSC) for solving distributive NUM problems under time-varying fading channels. We shall also study a specific application example, namely the multi-commodity flow control and multi-carrier power allocation problem in multi-hop ad hoc networks. Our analysis shows that the PDSGA converges to a limit region rather than a single point under the finite state Markov chain (FSMC) fading channels. We also show that the order of growth of the tracking errors is given by O(T/N), where T and N are the update interval and the average sojourn time of the FSMC, respectively. Based on this analysis, we derive a low complexity distributive adaptation algorithm for determining the adaptive scaling matrices, which can be implemented distributively at each transmitter. The numerical results show the superior performance of the proposed dynamic scaling matrix algorithm over several baseline schemes, such as the regular primal-dual gradient algorithm

    Channel assignments using constrained greedy algorithm, T-coloring and simulated annealing in mesh and cellular networks

    Get PDF
    Channel assignment is an important step in communication networks. The objectives of minimizing networks interference and the channels used are the problems in the channel assignments of the networks. In real environments, some difference will be expected in the performance of the networks when the channel allocation algorithms under more accurate interference models are deployed. In this research, the wireless mesh networks represent dynamic networks while static networks are represented by the cellular networks. In the wireless mesh networks, communication between a pair of nodes happens when both nodes are assigned with channels. The cellular networks are the radio network distributed over land areas called cells, each served by at least one fixed-location transceiver. Channel assignments in the networks is an application of the vertex coloring in graph theory. Previously, the Greedy Algorithm was used for link scheduling but only the adjacent channel constraint was considered. Here, an algorithm called Improved Greedy Algorithm was proposed to solve the channel assignments by considering the adjacent channel and co-channel constraints which is an improvement to the algorithm. Besides, Simulated Annealing and T-coloring problem are combined to minimize the channels used. The algorithms are applied for single and multiple channels communications in the wireless mesh networks and cellular networks to show the different results of the channel assignments. Further improvement is made on the multiple channels case where the Improved Greedy Algorithm is applied by considering the cosite constraint in addition to the co-channel and adjacent channel constraints. The Improved Greedy Algorithm has been tested in a series of simulations. Results for the simulations prove that the Improved Greedy Algorithm perform significantly well for the channel assignment problem

    Cross-Layer Optimal Rate Allocation for Heterogeneous Wireless Multicast

    Get PDF
    Heterogeneous multicast is an efficient communication scheme especially for multimedia applications running over multihop networks. The term heterogeneous refers to the phenomenon when multicast receivers in the same session require service at different rates commensurate with their capabilities. In this paper, we address the problem of resource allocation for a set of heterogeneous multicast sessions over multihop wireless networks. We propose an iterative algorithm that achieves the optimal rates for a set of heterogeneous multicast sessions such that the aggregate utility for all sessions is maximized. We present the formulation of the multicast resource allocation problem as a nonlinear optimization model and highlight the cross-layer framework that can solve this problem in a distributed ad hoc network environment with asynchronous computations. Our simulations show that the algorithm achieves optimal resource utilization, guarantees fairness among multicast sessions, provides flexibility in allocating rates over different parts of the multicast sessions, and adapts to changing conditions such as dynamic channel capacity and node mobility. Our results show that the proposed algorithm not only provides flexibility in allocating resources across multicast sessions, but also increases the aggregate system utility and improves the overall system throughput by almost 30% compared to homogeneous multicast

    Message passing resource allocation for the uplink of multicarrier systems

    Full text link
    We propose a novel distributed resource allocation scheme for the up-link of a cellular multi-carrier system based on the message passing (MP) algorithm. In the proposed approach each transmitter iteratively sends and receives information messages to/from the base station with the goal of achieving an optimal resource allocation strategy. The exchanged messages are the solution of small distributed allocation problems. To reduce the computational load, the MP problems at the terminals follow a dynamic programming formulation. The advantage of the proposed scheme is that it distributes the computational effort among all the transmitters in the cell and it does not require the presence of a central controller that takes all the decisions. Numerical results show that the proposed approach is an excellent solution to the resource allocation problem for cellular multi-carrier systems.Comment: 6 pages, 4 figure

    A distributed algorithm for wireless resource allocation using coalitions and the Nash bargaining solution

    Get PDF
    • 

    corecore