2,148 research outputs found

    A Novel Protocol For Barrier K-Coverage In Wireless Sensor Networks

    Get PDF
    One of major problems in the wireless sensor networks is the barrier coverage problem. This problem deals with the ability to minimizing the probability of undetected penetration through the barrier (sensor network). The reliability and fault tolerance problems are very important for long strip barrier coverage sensor networks. Also, another design challenge in sensor networks is to save limited energy resources to prolong the lifetime of wireless sensor network. In this paper we propose the fault tolerant k-barrier coverage protocol, called APBC. The proposed protocol maintains a good balance in using nodes energy, in order to prolong the network lifetime. The proposed protocol presents a proper way to provide the k-barrier coverage at nodes fails without reexecuting the algorithm. The simulation results show that this method prolongs the lifetime of the network in comparison with RIS method

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Deployment, Coverage And Network Optimization In Wireless Video Sensor Networks For 3D Indoor Monitoring

    Get PDF
    As a result of extensive research over the past decade or so, wireless sensor networks (wsns) have evolved into a well established technology for industry, environmental and medical applications. However, traditional wsns employ such sensors as thermal or photo light resistors that are often modeled with simple omni-directional sensing ranges, which focus only on scalar data within the sensing environment. In contrast, the sensing range of a wireless video sensor is directional and capable of providing more detailed video information about the sensing field. Additionally, with the introduction of modern features in non-fixed focus cameras such as the pan, tilt and zoom (ptz), the sensing range of a video sensor can be further regarded as a fan-shape in 2d and pyramid-shape in 3d. Such uniqueness attributed to wireless video sensors and the challenges associated with deployment restrictions of indoor monitoring make the traditional sensor coverage, deployment and networked solutions in 2d sensing model environments for wsns ineffective and inapplicable in solving the wireless video sensor network (wvsn) issues for 3d indoor space, thus calling for novel solutions. In this dissertation, we propose optimization techniques and develop solutions that will address the coverage, deployment and network issues associated within wireless video sensor networks for a 3d indoor environment. We first model the general problem in a continuous 3d space to minimize the total number of required video sensors to monitor a given 3d indoor region. We then convert it into a discrete version problem by incorporating 3d grids, which can achieve arbitrary approximation precision by adjusting the grid granularity. Due in part to the uniqueness of the visual sensor directional sensing range, we propose to exploit the directional feature to determine the optimal angular-coverage of each deployed visual sensor. Thus, we propose to deploy the visual sensors from divergent directional angles and further extend k-coverage to ``k-angular-coverage\u27\u27, while ensuring connectivity within the network. We then propose a series of mechanisms to handle obstacles in the 3d environment. We develop efficient greedy heuristic solutions that integrate all these aforementioned considerations one by one and can yield high quality results. Based on this, we also propose enhanced depth first search (dfs) algorithms that can not only further improve the solution quality, but also return optimal results if given enough time. Our extensive simulations demonstrate the superiority of both our greedy heuristic and enhanced dfs solutions. Finally, this dissertation discusses some future research directions such as in-network traffic routing and scheduling issues

    Finding and Mending Barrier Gaps in Wireless Sensor Networks

    Full text link
    Constructing sensing barriers using wireless sensor networks has important applications in military operations and homeland security. The goal of forming a sensing barrier is to detect intruders attempting to cross the network. Early studies often assume that sensors remain static once deployed. We note that barrier gaps may occur at deployment if sensors are deployed at random. Barrier gaps may also occur in an existing barrier if some sensors used to form the barrier start malfunctioning or run out of power. We present an efficient solution to solve this problem. In particular, we devise an efficient algorithm to find sensing gaps and relocate mobile sensors to form a new barrier while balancing the energy consumption among mobile sensors. We also investigate the related design issues and performance tradeoffs. Simulation results show that our algorithms can effectively improve the barrier coverage of a wireless sensor network under a wide range of deployment parameters. These results provide insights and guidelines to the deployment, design, and performance of mobile wireless sensor networks for barrier coverage

    Intelligent deployment strategies for passive underwater sensor networks

    Get PDF
    Passive underwater sensor networks are often used to monitor a general area of the ocean, a port or military installation, or to detect underwater vehicles near a high value unit at sea, such as a fuel ship or aircraft carrier. Deploying an underwater sensor network across a large area of interest (AOI), for military surveillance purposes, is a significant challenge due to the inherent difficulties posed by the underwater channel in terms of sensing and communications between sensors. Moreover, monetary constraints, arising from the high cost of these sensors and their deployment, limit the number of available sensors. As a result, sensor deployment must be done as efficiently as possible. The objective of this work is to develop a deployment strategy for passive underwater sensors in an area clearance scenario, where there is no apparent target for an adversary to gravitate towards, such as a ship or a port, while considering all factors pertinent to underwater sensor deployment. These factors include sensing range, communications range, monetary costs, link redundancy, range dependence, and probabilistic visitation. A complete treatment of the underwater sensor deployment problem is presented in this work from determining the purpose of the sensor field to physically deploying the sensors. Assuming a field designer is given a suboptimal number of sensors, they must be methodically allocated across an AOI. The Game Theory Field Design (GTFD) model, proposed in this work, is able to accomplish this task by evaluating the acoustic characteristics across the AOI and allocating sensors accordingly. Since GTFD considers only circular sensing coverage regions, an extension is proposed to consider irregularly shaped regions. Sensor deployment locations are planned using a proposed evolutionary approach, called the Underwater Sensor Deployment Evolutionary Algorithm, which utilizes two suitable network topologies, mesh and cluster. The effects of these topologies, and a sensor\u27s communications range, on the sensing capabilities of a sensor field, are also investigated. Lastly, the impact of deployment imprecision on the connectivity of an underwater sensor field, using a mesh topology, is analyzed, for cases where sensor locations after deployment do not exactly coincide with planned sensor locations

    Spatial and Temporal Changes of Tidal Inlet Using Object-Based Image Analysis of Multibeam Echosounder Measurements: A Case from the Lagoon of Venice, Italy

    Get PDF
    Scientific exploration of seabed substrata has significantly progressed in the last few years. Hydroacoustic methods of seafloor investigation, including multibeam echosounder measurements, allow us to map large areas of the seabed with unprecedented precision. Through time-series of hydroacoustic measurements, it was possible to determine areas with distinct characteristics in the inlets of the Lagoon of Venice, Italy. Their temporal variability was investigated. Monitoring the changes was particularly relevant, considering the presence at the channel inlets of mobile barriers of the Experimental Electromechanical Module (MoSE) project installed to protect the historical city of Venice from flooding. The detection of temporal and spatial changes was performed by comparing seafloor maps created using object-based image analysis and supervised classifiers. The analysis included extraction of 25 multibeam echosounder bathymetry and backscatter features. Their importance was estimated using an objective approach with two feature selection methods. Moreover, the study investigated how the accuracy of classification could be affected by the scale of object-based segmentation. The application of the classification method at the proper scale allowed us to observe habitat changes in the tidal inlet of the Venice Lagoon, showing that the sediment substrates located in the Chioggia inlet were subjected to very dynamic changes. In general, during the study period, the area was enriched in mixed and muddy sediments and was depleted in sandy deposits. This study presents a unique methodological approach to predictive seabed sediment composition mapping and change detection in a very shallow marine environment. A consistent, repeatable, logical site-specific workflow was designed, whose main assumptions could be applied to other seabed mapping case studies in both shallow and deep marine environments, all over the world

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Cooperative Navigation for Low-bandwidth Mobile Acoustic Networks.

    Full text link
    This thesis reports on the design and validation of estimation and planning algorithms for underwater vehicle cooperative localization. While attitude and depth are easily instrumented with bounded-error, autonomous underwater vehicles (AUVs) have no internal sensor that directly observes XY position. The global positioning system (GPS) and other radio-based navigation techniques are not available because of the strong attenuation of electromagnetic signals in seawater. The navigation algorithms presented herein fuse local body-frame rate and attitude measurements with range observations between vehicles within a decentralized architecture. The acoustic communication channel is both unreliable and low bandwidth, precluding many state-of-the-art terrestrial cooperative navigation algorithms. We exploit the underlying structure of a post-process centralized estimator in order to derive two real-time decentralized estimation frameworks. First, the origin state method enables a client vehicle to exactly reproduce the corresponding centralized estimate within a server-to-client vehicle network. Second, a graph-based navigation framework produces an approximate reconstruction of the centralized estimate onboard each vehicle. Finally, we present a method to plan a locally optimal server path to localize a client vehicle along a desired nominal trajectory. The planning algorithm introduces a probabilistic channel model into prior Gaussian belief space planning frameworks. In summary, cooperative localization reduces XY position error growth within underwater vehicle networks. Moreover, these methods remove the reliance on static beacon networks, which do not scale to large vehicle networks and limit the range of operations. Each proposed localization algorithm was validated in full-scale AUV field trials. The planning framework was evaluated through numerical simulation.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113428/1/jmwalls_1.pd
    corecore