1,103 research outputs found

    FREIGHT: Fast Streaming Hypergraph Partitioning

    Get PDF
    Partitioning the vertices of a (hyper)graph into k roughly balanced blocks such that few (hyper)edges run between blocks is a key problem for large-scale distributed processing. A current trend for partitioning huge (hyper)graphs using low computational resources are streaming algorithms. In this work, we propose FREIGHT: a Fast stREamInG Hypergraph parTitioning algorithm which is an adaptation of the widely-known graph-based algorithm Fennel. By using an efficient data structure, we make the overall running of FREIGHT linearly dependent on the pin-count of the hypergraph and the memory consumption linearly dependent on the numbers of nets and blocks. The results of our extensive experimentation showcase the promising performance of FREIGHT as a highly efficient and effective solution for streaming hypergraph partitioning. Our algorithm demonstrates competitive running time with the Hashing algorithm, with a difference of a maximum factor of four observed on three fourths of the instances. Significantly, our findings highlight the superiority of FREIGHT over all existing (buffered) streaming algorithms and even the in-memory algorithm HYPE, with respect to both cut-net and connectivity measures. This indicates that our proposed algorithm is a promising hypergraph partitioning tool to tackle the challenge posed by large-scale and dynamic data processing

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    Deterministic Parallel Hypergraph Partitioning

    Get PDF
    Balanced hypergraph partitioning is a classical NP-hard optimization problem with applications in various domains such as VLSI design, simulating quantum circuits, optimizing data placement in distributed databases or minimizing communication volume in high-performance computing. Engineering parallel heuristics for this problem is a topic of recent research. Most of them are non-deterministic though. In this work, we design and implement a highly scalable deterministic algorithm in the state-of-the-art parallel partitioning framework Mt-KaHyPar. On our extensive set of benchmark instances, it achieves similar partition quality and performance as a comparable but non-deterministic configuration of Mt-KaHyPar and outperforms the only other existing parallel deterministic algorithm BiPart regarding partition quality, running time and parallel speedups
    corecore