51,823 research outputs found

    Virtual Interactions With Real-agents For Sustainable Natural Resource Management

    Get PDF
    Common pool resource management systems are complex to manage due to the absence of a clear understanding of the effects of users’ behavioral characteristics. Non-cooperative decision making based on individual rationality (as opposed to group rationality) and a tendency to free ride due to lack of trust and information about other users’ behavior creates externalities and can lead to tragedy of the commons without intervention by a regulator. Nevertheless, even regulatory institutions often fail to sustain natural common pool resources in the absence of clear understanding of the responses of multiple heterogeneous decision makers to different regulation schemes. While modeling can help with our understanding of complex coupled human-natural systems, past research has not been able to realistically simulate these systems for two major limitations: 1) lack of computational capacity and proper mathematical models for solving distributed systems with self-optimizing agents; and 2) lack of enough information about users’ characteristics in common pool resource systems due to absence of reliable monitoring information. Recently, different studies have tried to address the first limitation by developing agent-based models, which can be appropriately handled with today’s computational capacity. While these models are more realistic than the social planner’s models which have been traditionally used in the field, they normally rely on different heuristics for characterizing users’ behavior and incorporating heterogeneity. This work is a step-forward in addressing the second limitation, suggesting an efficient method for collecting information on diverse behavioral characteristics of real agents for incorporation in distributed agent-based models. Gaming in interactive virtual environments is suggested as a reliable method for understanding different variables that promote sustainable resource use through observation of decision making and iii behavior of the resource system beneficiaries under various institutional frameworks and policies. A review of educational or serious games for environmental management was undertaken to determine an appropriate game for collecting information on real-agents and also to investigate the state of environmental management games and their potential as an educational tool. A web-based groundwater sharing simulation game—Irrigania—was selected to analyze the behavior of real agents under different common pool resource management institutions. Participants included graduate and undergraduate students from the University of Central Florida and Lund University. Information was collected on participants’ resource use, behavior and mindset under different institutional settings through observation and discussion with participants. Preliminary use of water resources gaming suggests communication, cooperation, information disclosure, trust, credibility and social learning between beneficiaries as factors promoting a shift towards sustainable resource use. Additionally, Irrigania was determined to be an effective tool for complementing traditional lecture-based teaching of complex concepts related to sustainable natural resource management. The different behavioral groups identified in the study can be used for improved simulation of multi-agent groundwater management systems

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Lattice QCD Thermodynamics on the Grid

    Full text link
    We describe how we have used simultaneously O(103){\cal O}(10^3) nodes of the EGEE Grid, accumulating ca. 300 CPU-years in 2-3 months, to determine an important property of Quantum Chromodynamics. We explain how Grid resources were exploited efficiently and with ease, using user-level overlay based on Ganga and DIANE tools above standard Grid software stack. Application-specific scheduling and resource selection based on simple but powerful heuristics allowed to improve efficiency of the processing to obtain desired scientific results by a specified deadline. This is also a demonstration of combined use of supercomputers, to calculate the initial state of the QCD system, and Grids, to perform the subsequent massively distributed simulations. The QCD simulation was performed on a 163×416^3\times 4 lattice. Keeping the strange quark mass at its physical value, we reduced the masses of the up and down quarks until, under an increase of temperature, the system underwent a second-order phase transition to a quark-gluon plasma. Then we measured the response of this system to an increase in the quark density. We find that the transition is smoothened rather than sharpened. If confirmed on a finer lattice, this finding makes it unlikely for ongoing experimental searches to find a QCD critical point at small chemical potential

    Teaching about Madrid: A Collaborative Agents-Based Distributed Learning Course

    Get PDF
    Interactive art courses require a huge amount of computational resources to be running on real time. These computational resources are even bigger if the course has been designed as a Virtual Environment with which students can interact. In this paper, we present an initiative that has been develop in a close collaboration between two Spanish Universities: Universidad PolitĂ©cnica de Madrid and Universidad Rey Juan Carlos with the aim of join two previous research project: a Collaborative Awareness Model for Task-Balancing-Delivery (CAMT) in clusters and the “Teaching about Madrid” course, which provides a cultural interactive background of the capital of Spain
    • 

    corecore