164 research outputs found

    Research on Information Flow Topology for Connected Autonomous Vehicles

    Get PDF
    Information flow topology plays a crucial role in connected autonomous vehicles (CAVs). It describes how CAVs communicate and exchange information with each other. It predominantly affects the platoon\u27s performance, including the convergence time, robustness, stability, and scalability. It also dramatically affects the controller design of CAVs. Therefore, studying information flow topology is necessary to ensure the platoon\u27s stability and improve its performance. Advanced sliding mode controllers and optimisation strategies for information flow topology are investigated in this project. Firstly, the impact of information flow topology on the platoon is studied regarding tracking ability, fuel economy and driving comfort. A Pareto optimal information flow topology offline searching approach is proposed using a non-dominated sorting genetic algorithm (NSGA-II) to improve the platoon\u27s overall performance while ensuring stability. Secondly, the concept of asymmetric control is introduced in the topological matrix. For a linear CAVs model with time delay, a sliding mode controller is designed to target the platoon\u27s tracking performance. Moreover, the Lyapunov analysis is used via Riccati inequality to guarantee the platoon\u27s internal stability and input-to-output string stability. Then NSGA-II is used to find the homogeneous Pareto optimal asymmetric degree to improve the platoon\u27s performance. A similar approach is designed for a nonlinear CAVs model to find the Pareto heterogeneous asymmetric degree and improve the platoon\u27s performance. Thirdly, switching topology is studied to better deal with the platoon\u27s communication problems. A two-step switching topology framework is introduced. In the first step, an offline Pareto optimal topology search with imperfect communication scenarios is applied. The platoon\u27s performance is optimised using a multi-objective evolutionary algorithm based on decomposition (MOEA/D). In the second step, the optimal topology is switched and selected from among the previously obtained Pareto optimal topology candidates in real-time to minimise the control cost. For a continuous nonlinear heterogeneous platoon with actuator faults, a sliding mode controller with an adaptive mechanism is developed. Then, the Lyapunov approach is applied to the platoon\u27s tracking error dynamics, ensuring the systems uniformly ultimately bounded stability and string stability. For a discrete nonlinear heterogeneous platoon with packet loss, a discrete sliding mode controller with a double power reaching law is designed, and a modified MOEA/D with two opposing adaptive mechanisms is applied in the two-step framework. Simulations verify all the proposed controllers and frameworks, and experiments also test some. The results show the proposed strategy\u27s effectiveness and superiority in optimising the platoon\u27s performance with multiple objectives

    Safe and robust data-driven cooperative control policy for mixed vehicle platoons

    Get PDF
    This article considers mixed platoons consisting of both human-driven vehicles (HVs) and automated vehicles (AVs). The uncertainties and randomness in human driving behaviors highly affect the platoon safety and stability. However, most existing control strategies are either for platoons of pure AVs, or for special formations of mixed platoons with known HV models. This article addresses the control of mixed platoons with more general formations and unknown HV models. An innovative data-driven policy learning strategy is proposed to design the controllers for AVs based on vehicle-to-vehicle (V2V) communications. The policy learning strategy is embedded with the constraints of control input, inter-vehicular distance error and V2V communication topology. The strategy establishes a safe and robustly stable mixed platoon using prescribed communication topologies. The design efficacy is verified through simulations of a mixed platoon with different communication topologies and leader velocity profiles

    Data-driven robust predictive control for mixed vehicle platoons using noisy measurement

    Get PDF
    This paper investigates cooperative adaptive cruise control (CACC) for mixed platoons consisting of both human-driven vehicles (HVs) and automated vehicles (AVs). This research is critical because the penetration rate of AVs in the transportation system will remain unsaturated for a long time. Uncertainties and randomness are prevalent in human driving behaviours and highly affect the platoon safety and stability, which need to be considered in the CACC design. A further challenge is the difficulty to know the exact models of the HVs and the exact powertrain parameters of both AVs and HVs. To address these challenges, this paper proposes a data-driven model predictive control (MPC) that does not need the exact models of HVs or powertrain parameters. The MPC design adopts the technique of data-driven reachability to predict the future trajectory of the mixed platoon within a given horizon based on noisy vehicle measurements. Compared to the classic adaptive cruise control (ACC) and existing data-driven adaptive dynamic programming (ADP), the proposed MPC ensures satisfaction of constraints such as acceleration limit and safe inter-vehicular gap. With this salient feature, the proposed MPC has provably guarantee in establishing a safe and robustly stable mixed platoon despite of the velocity changes of the leading vehicle. The efficacy and advantage of the proposed MPC are verified through comparison with the classic ACC and data-driven ADP methods on both small and large mixed platoons

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    Safe and Secure Control of Connected and Automated Vehicles

    Get PDF
    Evolution of Connected and Automated Vehicles (CAV), as an important class of Cyber-Physical Systems (CPS), plays a crucial role in providing innovative services in transport and traffic management. Vehicle platoons, as a set of CAV, forming a string of connected vehicles, have offered significant enhancements in traffic management, energy consumption, and safety in intelligent transportation systems. However, due to the existence of the cyber layer in these systems, subtle security related issues have been underlined and need to be taken into account with sufficient attention. In fact, despite the benefits brought by the platoons, they potentially suffer from insecure networks which provide the connectivity among the vehicles participating in the platoon which makes these systems prone to be under the risk of cyber attacks. One (or more) external intelligent intruder(s) might attack one (or more) of the vehicles participating in a platoon. In this respect, the need for a safe and secure driving experience is highly sensible and crucial. Hence, we will concentrate on improving the safety and security of CAVs in different scenarios by taking advantage of security related approaches and CAV control systems. In this thesis, we are going to focus on two main levels of platoon control, namely I) High level secure platoon control, and II) Low level secure platoon control. In particular, in the high level part, we consider platoons with arbitrary inter-vehicular communication topoloy whereby the vehicles are able to exchange their driving data with each other through DSRC-based environment. The whole platoon is modeled using graph-theoretic notions by denoting the vehicles as the nodes and the inter-vehicular communication quality as the edge weights. We study the security of the vehicle platoon exposed to cyber attacks using a novel game-theoretic approach. The platoon topologies under investigation are directed (called predecessor following) or undirected (bidirectional) weighted graphs. The attacker-detector game is defined as follows. The attacker targets some vehicles in the platoon to attack and the detector deploys monitoring sensors on the vehicles. The attacker's objective is to be as stealthy to the sensors as possible while the detector tries to place the monitoring sensors to detect the attack impact as much as he can. The existence of equilibrium strategies for this game is investigated based on which the detector can choose specific vehicles to put his sensors on and increase the security level of the system. Moreover, we study the effect of adding (or removing) communication links between vehicles on the game value. We then address the same problem while investigating the optimal actuator placement strategy needed by the defender to mitigate the effects of the attack. In this respect, the energy needed by the attacker to steer the consensus follower-leader dynamics of the system towards his desired direction is used as the game payoff. Simulation and experimental results conducted on a vehicle platoon setup using Robotic Operating System (ROS) demonstrate the effectiveness of our analyses. In the low level platoon control, we exploit novel secure model predictive controller algorithms to provide suitable countermeasure against a prevalent data availability attack, namely Denial-of-Service (DoS) attack. A DoS intruder can endanger the security of platoon by jamming the communication network among the vehicles which is responsible to transmit inter-vehicular data throughout the platoon. In other words, he may cause a failure in the network by jamming it or injecting a huge amount of delay, which in essence makes the outdated transferred data useless. This can potentially result in huge performance degradation or even hazardous collisions. We propose novel secure distributed nonlinear model predictive control algorithms for both static and dynamic nonlinear heterogeneous platoons which are capable of handling DoS attack performed on a platoon equipped by different communication topologies and at the same time they guarantee the desired formation control performance. Notably, in the dynamic case, our proposed method is capable of providing safe and secure control of the platoon in which arbitrary vehicles might perform cut-in and/or cut-out maneuvers. Convergence time analysis of the system are also investigated. Simulation results on a sample heterogeneous attacked platoon exploiting two-predecessor follower communication environment demonstrates the fruitfulness of the method

    A technique for determining viable military logistics support alternatives

    Get PDF
    A look at today's US military will see them operating much beyond the scope of protecting and defending the United States. These operations now consist of, but are not limited to humanitarian aid, disaster relief, and conflict resolution. This broad spectrum of operational environments has necessitated a transformation of the individual military services into a hybrid force that can leverage the inherent and emerging capabilities from the strengths of those under the umbrella of the Department of Defense (DOD), this concept has been coined Joint Operations. Supporting Joint Operations requires a new approach to determining a viable military logistics support system. The logistics architecture for these operations has to accommodate scale, time, varied mission objectives, and imperfect information. Compounding the problem is the human in the loop (HITL) decision maker (DM) who is a necessary component for quickly assessing and planning logistics support activities. Past outcomes are not necessarily good indicators of future results, but they can provide a reasonable starting point for planning and prediction of specific needs for future requirements. Adequately forecasting the necessary logistical support structure and commodities needed for any resource intensive environment has progressed well beyond stable demand assumptions to one in which dynamic and nonlinear environments can be captured with some degree of fidelity and accuracy. While these advances are important, a holistic approach that allows exploration of the operational environment or design space does not exist to guide the military logistician in a methodical way to support military forecasting activities. To bridge this capability gap, a method called A Technique for Logistics Architecture Selection (ATLAS) has been developed. This thesis describes and applies the ATLAS method to a notional military scenario that involves the Navy concept of Seabasing and the Marine Corps concept of Distributed Operations applied to a platoon sized element. This work uses modeling and simulation to incorporate expert opinion and knowledge of military operations, dynamic reasoning methods, and certainty analysis to create a decisions support system (DSS) that can be used to provide the DM an enhanced view of the logistics environment and variables that impact specific measures of effectiveness.Ph.D.Committee Chair: Mavris, Dimitri; Committee Member: Fahringer, Philip; Committee Member: Nixon, Janel; Committee Member: Schrage, Daniel; Committee Member: Soban, Danielle; Committee Member: Vachtsevanos, Georg

    Multiple vehicle cooperation and collision avoidance in automated vehicles : Survey and an AI‑enabled conceptual framework

    Get PDF
    Prospective customers are becoming more concerned about safety and comfort as the automobile industry swings toward automated vehicles (AVs). A comprehensive evaluation of recent AVs collision data indicates that modern automated driving systems are prone to rear-end collisions, usually leading to multiple-vehicle collisions. Moreover, most investigations into severe traffic conditions are confined to single-vehicle collisions. This work reviewed diverse techniques of existing literature to provide planning procedures for multiple vehicle cooperation and collision avoidance (MVCCA) strategies in AVs while also considering their performance and social impact viewpoints. Firstly, we investigate and tabulate the existing MVCCA techniques associated with single-vehicle collision avoidance perspectives. Then, current achievements are extensively evaluated, challenges and flows are identified, and remedies are intelligently formed to exploit a taxonomy. This paper also aims to give readers an AI-enabled conceptual framework and a decision-making model with a concrete structure of the training network settings to bridge the gaps between current investigations. These findings are intended to shed insight into the benefits of the greater efficiency of AVs set-up for academics and policymakers. Lastly, the open research issues discussed in this survey will pave the way for the actual implementation of driverless automated traffic systems
    • …
    corecore