365 research outputs found

    Smart Meter Privacy: A Utility-Privacy Framework

    Full text link
    End-user privacy in smart meter measurements is a well-known challenge in the smart grid. The solutions offered thus far have been tied to specific technologies such as batteries or assumptions on data usage. Existing solutions have also not quantified the loss of benefit (utility) that results from any such privacy-preserving approach. Using tools from information theory, a new framework is presented that abstracts both the privacy and the utility requirements of smart meter data. This leads to a novel privacy-utility tradeoff problem with minimal assumptions that is tractable. Specifically for a stationary Gaussian Markov model of the electricity load, it is shown that the optimal utility-and-privacy preserving solution requires filtering out frequency components that are low in power, and this approach appears to encompass most of the proposed privacy approaches.Comment: Accepted for publication and presentation at the IEEE SmartGridComm. 201

    Techniques, Taxonomy, and Challenges of Privacy Protection in the Smart Grid

    Get PDF
    As the ease with which any data are collected and transmitted increases, more privacy concerns arise leading to an increasing need to protect and preserve it. Much of the recent high-profile coverage of data mishandling and public mis- leadings about various aspects of privacy exasperates the severity. The Smart Grid (SG) is no exception with its key characteristics aimed at supporting bi-directional information flow between the consumer of electricity and the utility provider. What makes the SG privacy even more challenging and intriguing is the fact that the very success of the initiative depends on the expanded data generation, sharing, and pro- cessing. In particular, the deployment of smart meters whereby energy consumption information can easily be collected leads to major public hesitations about the tech- nology. Thus, to successfully transition from the traditional Power Grid to the SG of the future, public concerns about their privacy must be explicitly addressed and fears must be allayed. Along these lines, this chapter introduces some of the privacy issues and problems in the domain of the SG, develops a unique taxonomy of some of the recently proposed privacy protecting solutions as well as some if the future privacy challenges that must be addressed in the future.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111644/1/Uludag2015SG-privacy_book-chapter.pd

    On the Impact of Side Information on Smart Meter Privacy-Preserving Methods

    Full text link
    Smart meters (SMs) can pose privacy threats for consumers, an issue that has received significant attention in recent years. This paper studies the impact of Side Information (SI) on the performance of distortion-based real-time privacy-preserving algorithms for SMs. In particular, we consider a deep adversarial learning framework, in which the desired releaser (a recurrent neural network) is trained by fighting against an adversary network until convergence. To define the loss functions, two different approaches are considered: the Causal Adversarial Learning (CAL) and the Directed Information (DI)-based learning. The main difference between these approaches is in how the privacy term is measured during the training process. On the one hand, the releaser in the CAL method, by getting supervision from the actual values of the private variables and feedback from the adversary performance, tries to minimize the adversary log-likelihood. On the other hand, the releaser in the DI approach completely relies on the feedback received from the adversary and is optimized to maximize its uncertainty. The performance of these two algorithms is evaluated empirically using real-world SMs data, considering an attacker with access to SI (e.g., the day of the week) that tries to infer the occupancy status from the released SMs data. The results show that, although they perform similarly when the attacker does not exploit the SI, in general, the CAL method is less sensitive to the inclusion of SI. However, in both cases, privacy levels are significantly affected, particularly when multiple sources of SI are included

    Deep Directed Information-Based Learning for Privacy-Preserving Smart Meter Data Release

    Full text link
    The explosion of data collection has raised serious privacy concerns in users due to the possibility that sharing data may also reveal sensitive information. The main goal of a privacy-preserving mechanism is to prevent a malicious third party from inferring sensitive information while keeping the shared data useful. In this paper, we study this problem in the context of time series data and smart meters (SMs) power consumption measurements in particular. Although Mutual Information (MI) between private and released variables has been used as a common information-theoretic privacy measure, it fails to capture the causal time dependencies present in the power consumption time series data. To overcome this limitation, we introduce the Directed Information (DI) as a more meaningful measure of privacy in the considered setting and propose a novel loss function. The optimization is then performed using an adversarial framework where two Recurrent Neural Networks (RNNs), referred to as the releaser and the adversary, are trained with opposite goals. Our empirical studies on real-world data sets from SMs measurements in the worst-case scenario where an attacker has access to all the training data set used by the releaser, validate the proposed method and show the existing trade-offs between privacy and utility.Comment: to appear in IEEESmartGridComm 2019. arXiv admin note: substantial text overlap with arXiv:1906.0642
    • …
    corecore