36 research outputs found

    Denial-of-service attack modelling and detection for HTTP/2 services

    Get PDF
    Businesses and society alike have been heavily dependent on Internet-based services, albeit with experiences of constant and annoying disruptions caused by the adversary class. A malicious attack that can prevent establishment of Internet connections to web servers, initiated from legitimate client machines, is termed as a Denial of Service (DoS) attack; volume and intensity of which is rapidly growing thanks to the readily available attack tools and the ever-increasing network bandwidths. A majority of contemporary web servers are built on the HTTP/1.1 communication protocol. As a consequence, all literature found on DoS attack modelling and appertaining detection techniques, addresses only HTTP/1.x network traffic. This thesis presents a model of DoS attack traffic against servers employing the new communication protocol, namely HTTP/2. The HTTP/2 protocol significantly differs from its predecessor and introduces new messaging formats and data exchange mechanisms. This creates an urgent need to understand how malicious attacks including Denial of Service, can be launched against HTTP/2 services. Moreover, the ability of attackers to vary the network traffic models to stealthy affects web services, thereby requires extensive research and modelling. This research work not only provides a novel model for DoS attacks against HTTP/2 services, but also provides a model of stealthy variants of such attacks, that can disrupt routine web services. Specifically, HTTP/2 traffic patterns that consume computing resources of a server, such as CPU utilisation and memory consumption, were thoroughly explored and examined. The study presents four HTTP/2 attack models. The first being a flooding-based attack model, the second being a distributed model, the third and fourth are variant DoS attack models. The attack traffic analysis conducted in this study employed four machine learning techniques, namely Naïve Bayes, Decision Tree, JRip and Support Vector Machines. The HTTP/2 normal traffic model portrays online activities of human users. The model thus formulated was employed to also generate flash-crowd traffic, i.e. a large volume of normal traffic that incapacitates a web server, similar in fashion to a DoS attack, albeit with non-malicious intent. Flash-crowd traffic generated based on the defined model was used to populate the dataset of legitimate network traffic, to fuzz the machine learning-based attack detection process. The two variants of DoS attack traffic differed in terms of the traffic intensities and the inter-packet arrival delays introduced to better analyse the type and quality of DoS attacks that can be launched against HTTP/2 services. A detailed analysis of HTTP/2 features is also presented to rank relevant network traffic features for all four traffic models presented. These features were ranked based on legitimate as well as attack traffic observations conducted in this study. The study shows that machine learning-based analysis yields better classification performance, i.e. lower percentage of incorrectly classified instances, when the proposed HTTP/2 features are employed compared to when HTTP/1.1 features alone are used. The study shows how HTTP/2 DoS attack can be modelled, and how future work can extend the proposed model to create variant attack traffic models that can bypass intrusion-detection systems. Likewise, as the Internet traffic and the heterogeneity of Internet-connected devices are projected to increase significantly, legitimate traffic can yield varying traffic patterns, demanding further analysis. The significance of having current legitimate traffic datasets, together with the scope to extend the DoS attack models presented herewith, suggest that research in the DoS attack analysis and detection area will benefit from the work presented in this thesis

    Resilience Strategies for Network Challenge Detection, Identification and Remediation

    Get PDF
    The enormous growth of the Internet and its use in everyday life make it an attractive target for malicious users. As the network becomes more complex and sophisticated it becomes more vulnerable to attack. There is a pressing need for the future internet to be resilient, manageable and secure. Our research is on distributed challenge detection and is part of the EU Resumenet Project (Resilience and Survivability for Future Networking: Framework, Mechanisms and Experimental Evaluation). It aims to make networks more resilient to a wide range of challenges including malicious attacks, misconfiguration, faults, and operational overloads. Resilience means the ability of the network to provide an acceptable level of service in the face of significant challenges; it is a superset of commonly used definitions for survivability, dependability, and fault tolerance. Our proposed resilience strategy could detect a challenge situation by identifying an occurrence and impact in real time, then initiating appropriate remedial action. Action is autonomously taken to continue operations as much as possible and to mitigate the damage, and allowing an acceptable level of service to be maintained. The contribution of our work is the ability to mitigate a challenge as early as possible and rapidly detect its root cause. Also our proposed multi-stage policy based challenge detection system identifies both the existing and unforeseen challenges. This has been studied and demonstrated with an unknown worm attack. Our multi stage approach reduces the computation complexity compared to the traditional single stage, where one particular managed object is responsible for all the functions. The approach we propose in this thesis has the flexibility, scalability, adaptability, reproducibility and extensibility needed to assist in the identification and remediation of many future network challenges

    Exploiting cloud utility models for profit and ruin

    Get PDF
    A key characteristic that has led to the early adoption of public cloud computing is the utility pricing model that governs the cost of compute resources consumed. Similar to public utilities like gas and electricity, cloud consumers only pay for the resources they consume and only for the time they are utilized. As a result and pursuant to a Cloud Service Provider\u27s (CSP) Terms of Agreement, cloud consumers are responsible for all computational costs incurred within and in support of their rented computing environments whether these resources were consumed in good faith or not. While initial threat modeling and security research on the public cloud model has primarily focused on the confidentiality and integrity of data transferred, processed, and stored in the cloud, little attention has been paid to the external threat sources that have the capability to affect the financial viability of cloud-hosted services. Bounded by a utility pricing model, Internet-facing web resources hosted in the cloud are vulnerable to Fraudulent Resource Consumption (FRC) attacks. Unlike an application-layer DDoS attack that consumes resources with the goal of disrupting short-term availability, a FRC attack is a considerably more subtle attack that instead targets the utility model over an extended time period. By fraudulently consuming web resources in sufficient volume (i.e. data transferred out of the cloud), an attacker is able to inflict significant fraudulent charges to the victim. This work introduces and thoroughly describes the FRC attack and discusses why current application-layer DDoS mitigation schemes are not applicable to a more subtle attack. The work goes on to propose three detection metrics that together form the criteria for detecting a FRC attack from that of normal web activity and an attribution methodology capable of accurately identifying FRC attack clients. Experimental results based on plausible and challenging attack scenarios show that an attacker, without knowledge of the training web log, has a difficult time mimicking the self-similar and consistent request semantics of normal web activity necessary to carryout a successful FRC attack

    Denial of Service in Web-Domains: Building Defenses Against Next-Generation Attack Behavior

    Get PDF
    The existing state-of-the-art in the field of application layer Distributed Denial of Service (DDoS) protection is generally designed, and thus effective, only for static web domains. To the best of our knowledge, our work is the first that studies the problem of application layer DDoS defense in web domains of dynamic content and organization, and for next-generation bot behaviour. In the first part of this thesis, we focus on the following research tasks: 1) we identify the main weaknesses of the existing application-layer anti-DDoS solutions as proposed in research literature and in the industry, 2) we obtain a comprehensive picture of the current-day as well as the next-generation application-layer attack behaviour and 3) we propose novel techniques, based on a multidisciplinary approach that combines offline machine learning algorithms and statistical analysis, for detection of suspicious web visitors in static web domains. Then, in the second part of the thesis, we propose and evaluate a novel anti-DDoS system that detects a broad range of application-layer DDoS attacks, both in static and dynamic web domains, through the use of advanced techniques of data mining. The key advantage of our system relative to other systems that resort to the use of challenge-response tests (such as CAPTCHAs) in combating malicious bots is that our system minimizes the number of these tests that are presented to valid human visitors while succeeding in preventing most malicious attackers from accessing the web site. The results of the experimental evaluation of the proposed system demonstrate effective detection of current and future variants of application layer DDoS attacks

    Exploiting Cloud Utility Models for Profit and Ruin

    Full text link

    A Multi Agent System for Flow-Based Intrusion Detection

    Get PDF
    The detection and elimination of threats to cyber security is essential for system functionality, protection of valuable information, and preventing costly destruction of assets. This thesis presents a Mobile Multi-Agent Flow-Based IDS called MFIREv3 that provides network anomaly detection of intrusions and automated defense. This version of the MFIRE system includes the development and testing of a Multi-Objective Evolutionary Algorithm (MOEA) for feature selection that provides agents with the optimal set of features for classifying the state of the network. Feature selection provides separable data points for the selected attacks: Worm, Distributed Denial of Service, Man-in-the-Middle, Scan, and Trojan. This investigation develops three techniques of self-organization for multiple distributed agents in an intrusion detection system: Reputation, Stochastic, and Maximum Cover. These three movement models are tested for effectiveness in locating good agent vantage points within the network to classify the state of the network. MFIREv3 also introduces the design of defensive measures to limit the effects of network attacks. Defensive measures included in this research are rate-limiting and elimination of infected nodes. The results of this research provide an optimistic outlook for flow-based multi-agent systems for cyber security. The impact of this research illustrates how feature selection in cooperation with movement models for multi agent systems provides excellent attack detection and classification
    corecore