39,323 research outputs found

    Convergence and Optimality of Adaptive Mixed Finite Element Methods

    Full text link
    The convergence and optimality of adaptive mixed finite element methods for the Poisson equation are established in this paper. The main difficulty for mixed finite element methods is the lack of minimization principle and thus the failure of orthogonality. A quasi-orthogonality property is proved using the fact that the error is orthogonal to the divergence free subspace, while the part of the error that is not divergence free can be bounded by the data oscillation using a discrete stability result. This discrete stability result is also used to get a localized discrete upper bound which is crucial for the proof of the optimality of the adaptive approximation

    Adaptive vertex-centered finite volume methods for general second-order linear elliptic PDEs

    Full text link
    We prove optimal convergence rates for the discretization of a general second-order linear elliptic PDE with an adaptive vertex-centered finite volume scheme. While our prior work Erath and Praetorius [SIAM J. Numer. Anal., 54 (2016), pp. 2228--2255] was restricted to symmetric problems, the present analysis also covers non-symmetric problems and hence the important case of present convection

    Adaptive, Anisotropic and Hierarchical cones of Discrete Convex functions

    Full text link
    We address the discretization of optimization problems posed on the cone of convex functions, motivated in particular by the principal agent problem in economics, which models the impact of monopoly on product quality. Consider a two dimensional domain, sampled on a grid of N points. We show that the cone of restrictions to the grid of convex functions is in general characterized by N^2 linear inequalities; a direct computational use of this description therefore has a prohibitive complexity. We thus introduce a hierarchy of sub-cones of discrete convex functions, associated to stencils which can be adaptively, locally, and anisotropically refined. Numerical experiments optimize the accuracy/complexity tradeoff through the use of a-posteriori stencil refinement strategies.Comment: 35 pages, 11 figures. (Second version fixes a small bug in Lemma 3.2. Modifications are anecdotic.

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time
    corecore