68 research outputs found

    IST Austria Thesis

    Get PDF
    The human ability to recognize objects in complex scenes has driven research in the computer vision field over couple of decades. This thesis focuses on the object recognition task in images. That is, given the image, we want the computer system to be able to predict the class of the object that appears in the image. A recent successful attempt to bridge semantic understanding of the image perceived by humans and by computers uses attribute-based models. Attributes are semantic properties of the objects shared across different categories, which humans and computers can decide on. To explore the attribute-based models we take a statistical machine learning approach, and address two key learning challenges in view of object recognition task: learning augmented attributes as mid-level discriminative feature representation, and learning with attributes as privileged information. Our main contributions are parametric and non-parametric models and algorithms to solve these frameworks. In the parametric approach, we explore an autoencoder model combined with the large margin nearest neighbor principle for mid-level feature learning, and linear support vector machines for learning with privileged information. In the non-parametric approach, we propose a supervised Indian Buffet Process for automatic augmentation of semantic attributes, and explore the Gaussian Processes classification framework for learning with privileged information. A thorough experimental analysis shows the effectiveness of the proposed models in both parametric and non-parametric views

    Feature-based time-series analysis

    Full text link
    This work presents an introduction to feature-based time-series analysis. The time series as a data type is first described, along with an overview of the interdisciplinary time-series analysis literature. I then summarize the range of feature-based representations for time series that have been developed to aid interpretable insights into time-series structure. Particular emphasis is given to emerging research that facilitates wide comparison of feature-based representations that allow us to understand the properties of a time-series dataset that make it suited to a particular feature-based representation or analysis algorithm. The future of time-series analysis is likely to embrace approaches that exploit machine learning methods to partially automate human learning to aid understanding of the complex dynamical patterns in the time series we measure from the world.Comment: 28 pages, 9 figure

    Deep neural networks in acoustic model

    Get PDF
    L'estudiant m'ha contactat amb el requeriment d'una oferta per matricular-se i aquesta oferta respon a la seva petició. Després de confirmar amb Secretaria Acadèmica que està acceptat a destinació, deixem títol, descripció, objectius, i tutor extern per determinar quan arribi a destí.Do implementation of a training of a deep neural network acoustic model for speech recognitio

    Extended phone log-likelihood ratio features and acoustic-based I-vectors for language recognition

    Get PDF
    This paper presents new techniques with relevant improvements added to the primary system presented by our group to the Albayzin 2012 LRE competition, where the use of any additional corpora for training or optimizing the models was forbidden. In this work, we present the incorporation of an additional phonotactic subsystem based on the use of phone log-likelihood ratio features (PLLR) extracted from different phonotactic recognizers that contributes to improve the accuracy of the system in a 21.4% in terms of Cavg (we also present results for the official metric during the evaluation, Fact). We will present how using these features at the phone state level provides significant improvements, when used together with dimensionality reduction techniques, especially PCA. We have also experimented with applying alternative SDC-like configurations on these PLLR features with additional improvements. Also, we will describe some modifications to the MFCC-based acoustic i-vector system which have also contributed to additional improvements. The final fused system outperformed the baseline in 27.4% in Cavg

    PHONOTACTIC AND ACOUSTIC LANGUAGE RECOGNITION

    Get PDF
    Práce pojednává o fonotaktickém a akustickém přístupu pro automatické rozpoznávání jazyka. První část práce pojednává o fonotaktickém přístupu založeném na výskytu fonémových sekvenci v řeči. Nejdříve je prezentován popis vývoje fonémového rozpoznávače jako techniky pro přepis řeči do sekvence smysluplných symbolů. Hlavní důraz je kladen na dobré natrénování fonémového rozpoznávače a kombinaci výsledků z několika fonémových rozpoznávačů trénovaných na různých jazycích (Paralelní fonémové rozpoznávání následované jazykovými modely (PPRLM)). Práce také pojednává o nové technice anti-modely v PPRLM a studuje použití fonémových grafů místo nejlepšího přepisu. Na závěr práce jsou porovnány dva přístupy modelování výstupu fonémového rozpoznávače -- standardní n-gramové jazykové modely a binární rozhodovací stromy. Hlavní přínos v akustickém přístupu je diskriminativní modelování cílových modelů jazyků a první experimenty s kombinací diskriminativního trénování a na příznacích, kde byl odstraněn vliv kanálu. Práce dále zkoumá různé druhy technik fúzi akustického a fonotaktického přístupu. Všechny experimenty jsou provedeny na standardních datech z NIST evaluaci konané v letech 2003, 2005 a 2007, takže jsou přímo porovnatelné s výsledky ostatních skupin zabývajících se automatickým rozpoznáváním jazyka. S fúzí uvedených technik jsme posunuli state-of-the-art výsledky a dosáhli vynikajících výsledků ve dvou NIST evaluacích.This thesis deals with phonotactic and acoustic techniques for automatic language recognition (LRE). The first part of the thesis deals with the phonotactic language recognition based on co-occurrences of phone sequences in speech. A thorough study of phone recognition as tokenization technique for LRE is done, with focus on the amounts of training data for phone recognizer and on the combination of phone recognizers trained on several language (Parallel Phone Recognition followed by Language Model - PPRLM). The thesis also deals with novel technique of anti-models in PPRLM and investigates into using phone lattices instead of strings. The work on phonotactic approach is concluded by a comparison of classical n-gram modeling techniques and binary decision trees. The acoustic LRE was addressed too, with the main focus on discriminative techniques for training target language acoustic models and on initial (but successful) experiments with removing channel dependencies. We have also investigated into the fusion of phonotactic and acoustic approaches. All experiments were performed on standard data from NIST 2003, 2005 and 2007 evaluations so that the results are directly comparable to other laboratories in the LRE community. With the above mentioned techniques, the fused systems defined the state-of-the-art in the LRE field and reached excellent results in NIST evaluations.

    Speaker Recognition: Advancements and Challenges

    Get PDF

    Neighborhood analysis methods in acoustic modeling for automatic speech recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 121-134).This thesis investigates the problem of using nearest-neighbor based non-parametric methods for performing multi-class class-conditional probability estimation. The methods developed are applied to the problem of acoustic modeling for speech recognition. Neighborhood components analysis (NCA) (Goldberger et al. [2005]) serves as the departure point for this study. NCA is a non-parametric method that can be seen as providing two things: (1) low-dimensional linear projections of the feature space that allow nearest-neighbor algorithms to perform well, and (2) nearest-neighbor based class-conditional probability estimates. First, NCA is used to perform dimensionality reduction on acoustic vectors, a commonly addressed problem in speech recognition. NCA is shown to perform competitively with another commonly employed dimensionality reduction technique in speech known as heteroscedastic linear discriminant analysis (HLDA) (Kumar [1997]). Second, a nearest neighbor-based model related to NCA is created to provide a class-conditional estimate that is sensitive to the possible underlying relationship between the acoustic-phonetic labels. An embedding of the labels is learned that can be used to estimate the similarity or confusability between labels. This embedding is related to the concept of error-correcting output codes (ECOC) and therefore the proposed model is referred to as NCA-ECOC. The estimates provided by this method along with nearest neighbor information is shown to provide improvements in speech recognition performance (2.5% relative reduction in word error rate). Third, a model for calculating class-conditional probability estimates is proposed that generalizes GMM, NCA, and kernel density approaches. This model, called locally-adaptive neighborhood components analysis, LA-NCA, learns different low-dimensional projections for different parts of the space. The models exploits the fact that in different parts of the space different directions may be important for discrimination between the classes. This model is computationally intensive and prone to over-fitting, so methods for sub-selecting neighbors used for providing the classconditional estimates are explored. The estimates provided by LA-NCA are shown to give significant gains in speech recognition performance (7-8% relative reduction in word error rate) as well as phonetic classification.by Natasha Singh-Miller.Ph.D
    corecore