14,538 research outputs found

    Enhanced corn seed disease classification: leveraging MobileNetV2 with feature augmentation and transfer learning

    Get PDF
    In the era of advancing artificial intelligence (AI), its application in agriculture has become increasingly pivotal. This study explores the integration of AI for the discriminative classification of corn diseases, addressing the need for efficient agricultural practices. Leveraging a comprehensive dataset, the study encompasses 21,662 images categorized into four classes: Broken, Discolored, Silk cut, and Pure. The proposed model, an enhanced iteration of MobileNetV2, strategically incorporates additional layers—Average Pooling, Flatten, Dense, Dropout, and softmax—augmenting its feature extraction capabilities. Model tuning techniques, including data augmentation, adaptive learning rate, model checkpointing, dropout, and transfer learning, fortify the model's efficiency. Results showcase the proposed model's exceptional performance, achieving an accuracy of ~96% across the four classes. Precision, recall, and F1-score metrics underscore the model's proficiency, with precision values ranging from 0.949 to 0.975 and recall values from 0.957 to 0.963. In a comparative analysis with state-of-the-art (SOTA) models, the proposed model outshines counterparts in terms of precision, recall, F1-score, and accuracy. Notably, MobileNetV2, the base model for the proposed architecture, achieves the highest values, affirming its superiority in accurately classifying instances within the corn disease dataset. This study not only contributes to the growing body of AI applications in agriculture but also presents a novel and effective model for corn disease classification. The proposed model's robust performance, combined with its competitive edge against SOTA models, positions it as a promising solution for advancing precision agriculture and crop management

    Advanced framework for epilepsy detection through image-based EEG signal analysis

    Get PDF
    BackgroundRecurrent and unpredictable seizures characterize epilepsy, a neurological disorder affecting millions worldwide. Epilepsy diagnosis is crucial for timely treatment and better outcomes. Electroencephalography (EEG) time-series data analysis is essential for epilepsy diagnosis and surveillance. Complex signal processing methods used in traditional EEG analysis are computationally demanding and difficult to generalize across patients. Researchers are using machine learning to improve epilepsy detection, particularly visual feature extraction from EEG time-series data.ObjectiveThis study examines the application of a Gramian Angular Summation Field (GASF) approach for the analysis of EEG signals. Additionally, it explores the utilization of image features, specifically the Scale-Invariant Feature Transform (SIFT) and Oriented FAST and Rotated BRIEF (ORB) techniques, for the purpose of epilepsy detection in EEG data.MethodsThe proposed methodology encompasses the transformation of EEG signals into images based on GASF, followed by the extraction of features utilizing SIFT and ORB techniques, and ultimately, the selection of relevant features. A state-of-the-art machine learning classifier is employed to classify GASF images into two categories: normal EEG patterns and focal EEG patterns. Bern-Barcelona EEG recordings were used to test the proposed method.ResultsThis method classifies EEG signals with 96% accuracy using SIFT features and 94% using ORB features. The Random Forest (RF) classifier surpasses state-of-the-art approaches in precision, recall, F1-score, specificity, and Area Under Curve (AUC). The Receiver Operating Characteristic (ROC) curve shows that Random Forest outperforms Support Vector Machine (SVM) and k-Nearest Neighbors (k-NN) classifiers.SignificanceThe suggested method has many advantages over time-series EEG data analysis and machine learning classifiers used in epilepsy detection studies. A novel image-based preprocessing pipeline using GASF for robust image synthesis and SIFT and ORB for feature extraction is presented here. The study found that the suggested method can accurately discriminate between normal and focal EEG signals, improving patient outcomes through early and accurate epilepsy diagnosis

    Deep generative models for network data synthesis and monitoring

    Get PDF
    Measurement and monitoring are fundamental tasks in all networks, enabling the down-stream management and optimization of the network. Although networks inherently have abundant amounts of monitoring data, its access and effective measurement is another story. The challenges exist in many aspects. First, the inaccessibility of network monitoring data for external users, and it is hard to provide a high-fidelity dataset without leaking commercial sensitive information. Second, it could be very expensive to carry out effective data collection to cover a large-scale network system, considering the size of network growing, i.e., cell number of radio network and the number of flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fidelity and efficiency simultaneously in network monitoring, as the available resources in the network element that can be applied to support the measurement function are too limited to implement sophisticated mechanisms. Finally, understanding and explaining the behavior of the network becomes challenging due to its size and complex structure. Various emerging optimization-based solutions (e.g., compressive sensing) or data-driven solutions (e.g. deep learning) have been proposed for the aforementioned challenges. However, the fidelity and efficiency of existing methods cannot yet meet the current network requirements. The contributions made in this thesis significantly advance the state of the art in the domain of network measurement and monitoring techniques. Overall, we leverage cutting-edge machine learning technology, deep generative modeling, throughout the entire thesis. First, we design and realize APPSHOT , an efficient city-scale network traffic sharing with a conditional generative model, which only requires open-source contextual data during inference (e.g., land use information and population distribution). Second, we develop an efficient drive testing system — GENDT, based on generative model, which combines graph neural networks, conditional generation, and quantified model uncertainty to enhance the efficiency of mobile drive testing. Third, we design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time network telemetry system with latent GANs and spectral-temporal networks. Finally, we propose SPOTLIGHT , an accurate, explainable, and efficient anomaly detection system of the Open RAN (Radio Access Network) system. The lessons learned through this research are summarized, and interesting topics are discussed for future work in this domain. All proposed solutions have been evaluated with real-world datasets and applied to support different applications in real systems

    Explainable AI models for predicting drop coalescence in microfluidics device

    Get PDF
    In the field of chemical engineering, understanding the dynamics and probability of drop coalescence is not just an academic pursuit, but a critical requirement for advancing process design by applying energy only where it is needed to build necessary interfacial structures, increasing efficiency towards Net Zero manufacture. This research applies machine learning predictive models to unravel the sophisticated relationships embedded in the experimental data on drop coalescence in a microfluidics device. Through the deployment of SHapley Additive exPlanations values, critical features relevant to coalescence processes are consistently identified. Comprehensive feature ablation tests further delineate the robustness and susceptibility of each model. Furthermore, the incorporation of Local Interpretable Model-agnostic Explanations for local interpretability offers an elucidative perspective, clarifying the intricate decision-making mechanisms inherent to each model’s predictions. As a result, this research provides the relative importance of the features for the outcome of drop interactions. It also underscores the pivotal role of model interpretability in reinforcing confidence in machine learning predictions of complex physical phenomena that are central to chemical engineering applications

    Principled Diverse Counterfactuals in Multilinear Models

    Get PDF
    Machine learning (ML) applications have automated numerous real-life tasks,improving both private and public life. However, the black-box nature of manystate-of-the-art models poses the challenge of model verification; how can onebe sure that the algorithm bases its decisions on the proper criteria, or that itdoes not discriminate against certain minority groups? In this paper we proposea way to generate diverse counterfactual explanations from multilinear models,a broad class which includes Random Forests, as well as Bayesian Networks.<br/

    Neuromodulatory effects on early visual signal processing

    Get PDF
    Understanding how the brain processes information and generates simple to complex behavior constitutes one of the core objectives in systems neuroscience. However, when studying different neural circuits, their dynamics and interactions researchers often assume fixed connectivity, overlooking a crucial factor - the effect of neuromodulators. Neuromodulators can modulate circuit activity depending on several aspects, such as different brain states or sensory contexts. Therefore, considering the modulatory effects of neuromodulators on the functionality of neural circuits is an indispensable step towards a more complete picture of the brain’s ability to process information. Generally, this issue affects all neural systems; hence this thesis tries to address this with an experimental and computational approach to resolve neuromodulatory effects on cell type-level in a well-define system, the mouse retina. In the first study, we established and applied a machine-learning-based classification algorithm to identify individual functional retinal ganglion cell types, which enabled detailed cell type-resolved analyses. We applied the classifier to newly acquired data of light-evoked retinal ganglion cell responses and successfully identified their functional types. Here, the cell type-resolved analysis revealed that a particular principle of efficient coding applies to all types in a similar way. In a second study, we focused on the issue of inter-experimental variability that can occur during the process of pooling datasets. As a result, further downstream analyses may be complicated by the subtle variations between the individual datasets. To tackle this, we proposed a theoretical framework based on an adversarial autoencoder with the objective to remove inter-experimental variability from the pooled dataset, while preserving the underlying biological signal of interest. In the last study of this thesis, we investigated the functional effects of the neuromodulator nitric oxide on the retinal output signal. To this end, we used our previously developed retinal ganglion cell type classifier to unravel type-specific effects and established a paired recording protocol to account for type-specific time-dependent effects. We found that certain retinal ganglion cell types showed adaptational type-specific changes and that nitric oxide had a distinct modulation of a particular group of retinal ganglion cells. In summary, I first present several experimental and computational methods that allow to study functional neuromodulatory effects on the retinal output signal in a cell type-resolved manner and, second, use these tools to demonstrate their feasibility to study the neuromodulator nitric oxide

    Regional variation in diagnosis, prognosis and treatment of Guillain-Barré syndrome

    Get PDF

    Applications of Deep Learning Models in Financial Forecasting

    Get PDF
    In financial markets, deep learning techniques sparked a revolution, reshaping conventional approaches and amplifying predictive capabilities. This thesis explored the applications of deep learning models to unravel insights and methodologies aimed at advancing financial forecasting. The crux of the research problem lies in the applications of predictive models within financial domains, characterised by high volatility and uncertainty. This thesis investigated the application of advanced deep-learning methodologies in the context of financial forecasting, addressing the challenges posed by the dynamic nature of financial markets. These challenges were tackled by exploring a range of techniques, including convolutional neural networks (CNNs), long short-term memory networks (LSTMs), autoencoders (AEs), and variational autoencoders (VAEs), along with approaches such as encoding financial time series into images. Through analysis, methodologies such as transfer learning, convolutional neural networks, long short-term memory networks, generative modelling, and image encoding of time series data were examined. These methodologies collectively offered a comprehensive toolkit for extracting meaningful insights from financial data. The present work investigated the practicality of a deep learning CNN-LSTM model within the Directional Change framework to predict significant DC events—a task crucial for timely decisionmaking in financial markets. Furthermore, the potential of autoencoders and variational autoencoders to enhance financial forecasting accuracy and remove noise from financial time series data was explored. Leveraging their capacity within financial time series, these models offered promising avenues for improved data representation and subsequent forecasting. To further contribute to financial prediction capabilities, a deep multi-model was developed that harnessed the power of pre-trained computer vision models. This innovative approach aimed to predict the VVIX, utilising the cross-disciplinary synergy between computer vision and financial forecasting. By integrating knowledge from these domains, novel insights into the prediction of market volatility were provided

    Convolutional neural network ensemble learning for hyperspectral imaging-based blackberry fruit ripeness detection in uncontrolled farm environment

    Get PDF
    Fruit ripeness estimation models have for decades depended on spectral index features or colour-based features, such as mean, standard deviation, skewness, colour moments, and/or histograms for learning traits of fruit ripeness. Recently, few studies have explored the use of deep learning techniques to extract features from images of fruits with visible ripeness cues. However, the blackberry (Rubus fruticosus) fruit does not show obvious and reliable visible traits of ripeness when mature and therefore poses great difficulty to fruit pickers. The mature blackberry, to the human eye, is black before, during, and post-ripening. To address this engineering application challenge, this paper proposes a novel multi-input convolutional neural network (CNN) ensemble classifier for detecting subtle traits of ripeness in blackberry fruits. The multi-input CNN was created from a pre-trained visual geometry group 16-layer deep convolutional network (VGG16) model trained on the ImageNet dataset. The fully connected layers were optimized for learning traits of ripeness of mature blackberry fruits. The resulting model served as the base for building homogeneous ensemble learners that were ensemble using the stack generalization ensemble (SGE) framework. The input to the network is images acquired with a stereo sensor using visible and near-infrared (VIS-NIR) spectral filters at wavelengths of 700 nm and 770 nm. Through experiments, the proposed model achieved 95.1% accuracy on unseen sets and 90.2% accuracy with in-field conditions. Further experiments reveal that machine sensory is highly and positively correlated to human sensory over blackberry fruit skin texture
    corecore