207 research outputs found

    Face Recognition Using Fuzzy Moments Discriminant Analysis

    Get PDF
    In this work, an enhanced feature extraction method for holistic face recognition approach of gray intensity still image, namely Fuzzy Moment Discriminant Analysis is used. Which is first, based on Pseudo-Zernike Moments to extract dominant and significant features for each image of enrolled person, then the dimensionality of the moments features vectors is further reduced into discriminant moment features vectors using Linear Discriminant Analysis method, for these vectors the membership degrees in each class have been computed using Fuzzy K-Nearest Neighbor, after that, the membership degrees have been incorporated into the redefinition of the between-classes and within-classes scatter matrices to obtain final features vectors of  known persons. The test image is then compared with the faces enrollment images so that the face which has the minimum Euclidean distance with the test image is labeled with the identity of that image. Keyword: Zernike Moments, LDA, Fuzzy K-Nearest Neighbor

    Human Face Recognition

    Get PDF
    Face recognition, as the main biometric used by human beings, has become more popular for the last twenty years. Automatic recognition of human faces has many commercial and security applications in identity validation and recognition and has become one of the hottest topics in the area of image processing and pattern recognition since 1990. Availability of feasible technologies as well as the increasing request for reliable security systems in today’s world has been a motivation for many researchers to develop new methods for face recognition. In automatic face recognition we desire to either identify or verify one or more persons in still or video images of a scene by means of a stored database of faces. One of the important features of face recognition is its non-intrusive and non-contact property that distinguishes it from other biometrics like iris or finger print recognition that require subjects’ participation. During the last two decades several face recognition algorithms and systems have been proposed and some major advances have been achieved. As a result, the performance of face recognition systems under controlled conditions has now reached a satisfactory level. These systems, however, face some challenges in environments with variations in illumination, pose, expression, etc. The objective of this research is designing a reliable automated face recognition system which is robust under varying conditions of noise level, illumination and occlusion. A new method for illumination invariant feature extraction based on the illumination-reflectance model is proposed which is computationally efficient and does not require any prior information about the face model or illumination. A weighted voting scheme is also proposed to enhance the performance under illumination variations and also cancel occlusions. The proposed method uses mutual information and entropy of the images to generate different weights for a group of ensemble classifiers based on the input image quality. The method yields outstanding results by reducing the effect of both illumination and occlusion variations in the input face images

    Local And Semi-Global Feature-Correlative Techniques For Face Recognition

    Get PDF
    Face recognition is an interesting field of computer vision with many commercial and scientific applications. It is considered as a very hot topic and challenging problem at the moment. Many methods and techniques have been proposed and applied for this purpose, such as neural networks, PCA, Gabor filtering, etc. Each approach has its weaknesses as well as its points of strength. This paper introduces a highly efficient method for the recognition of human faces in digital images using a new feature extraction method that combines the global and local information in different views (poses) of facial images. Feature extraction techniques are applied on the images (faces) based on Zernike moments and structural similarity measure (SSIM) with local and semi-global blocks. Pre-processing is carried out whenever needed, and numbers of measurements are derived. More specifically, instead of the usual approach for applying statistics or structural methods only, the proposed methodology integrates higher-order representation patterns extracted by Zernike moments with a modified version of SSIM (M-SSIM). Individual measurements and metrics resulted from mixed SSIM and Zernike-based approaches give a powerful recognition tool with great results. Experiments reveal that correlative Zernike vectors give a better discriminant compared with using 2D correlation of the image itself. The recognition rate using ORL Database of Faces reaches 98.75%, while using FEI (Brazilian) Face Database we got 96.57%. The proposed approach is robust against rotation and noise

    NEURAL NETWORK CORRELATION BASED SIMILARITY EVALUATION WITH ZERNIKE MOMENTS FOR THE POSE-INVARIANT FACE RECOGNITION

    Get PDF
    Human face recognition is best application in pattern recognition for identification and recognition. Development of face recognition system is increasing day by day in market and research organizations. Different parameters and methods are used for face recognition. In this research project, we will discuss about the different algorithms used for face recognition that are Zernike Moments (ZMs) and correlation classification (CC) etc and compare these algorithms with proposed algorithm Z_CC (Zernike with Correlation Classification).The angular information or rotation of the face is calculated by using the Zernike moments (ZM) to obtain the degree or radian of face rotation from the frontal view. The robust combination of angle-invariant and scale-invariant features with the combination of Zernike moments and correlation classification has been proposed with the neural network classification. The experiments will be performed on the variety of datasets. The multi-object dataset has been combined by collection the samples with faces rotated in the training samples. Z_NN (Zernike with neural network) algorithm provide best recognition rate for human face recognition 90%. In this algorithm we use Zernike Moments and correlation for global feature extraction and after that these features are compared by using neural network

    An Intelligent Classification System For Aggregate Based On Image Processing And Neural Network

    Get PDF
    Bentuk dan tekstur permukaan aggregat mempengaruhi kekuatan dan struktur konkrit. Secara tradisi, mesin pengayakan mekanikal dan pengukuran manual digunakan bagi menentukan kedua-dua saiz dan bentuk aggregat. Aggregate’s shape and surface texture immensely influence the strength and structure of the resulting concrete. Traditionally, mechanical sieving and manual gauging are used to determine both the size and shape of the aggregates

    Human Activity Recognition Based on R Transform

    Full text link
    This paper addresses human activity recognition based on a new feature descriptor. For a binary human silhouette, an extended radon transform, transform, is employed to represent low-level features. The advantage of the trans-form lies in its low computational complexity and geomet-ric invariance. Then a set of HMMs based on the extracted features are trained to recognize activities. Compared with other commonly-used feature descriptors, transform is robust to frame loss in video, disjoint silhouettes and holes in the shape, and thus achieves better performance in rec-ognizing similar activities. Rich experiments have proved the efficiency of the proposed method. 1

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    An Extensive Review on Spectral Imaging in Biometric Systems: Challenges and Advancements

    Full text link
    Spectral imaging has recently gained traction for face recognition in biometric systems. We investigate the merits of spectral imaging for face recognition and the current challenges that hamper the widespread deployment of spectral sensors for face recognition. The reliability of conventional face recognition systems operating in the visible range is compromised by illumination changes, pose variations and spoof attacks. Recent works have reaped the benefits of spectral imaging to counter these limitations in surveillance activities (defence, airport security checks, etc.). However, the implementation of this technology for biometrics, is still in its infancy due to multiple reasons. We present an overview of the existing work in the domain of spectral imaging for face recognition, different types of modalities and their assessment, availability of public databases for sake of reproducible research as well as evaluation of algorithms, and recent advancements in the field, such as, the use of deep learning-based methods for recognizing faces from spectral images
    corecore