3,429 research outputs found

    A Field-Scale Decision Support System for Assessment and Management of Soil Functions

    Get PDF
    peer-reviewedAgricultural decision support systems (DSSs) are mostly focused on increasing the supply of individual soil functions such as, e.g., primary productivity or nutrient cycling, while neglecting other important soil functions, such as, e.g., water purification and regulation, climate regulation and carbon sequestration, soil biodiversity, and habitat provision. Making right management decisions for long-term sustainability is therefore challenging, and farmers and farm advisors would greatly benefit from an evidence-based DSS targeted for assessing and improving the supply of several soil functions simultaneously. To address this need, we designed the Soil Navigator DSS by applying a qualitative approach to multi-criteria decision modeling using Decision Expert (DEX) integrative methodology. Multi-criteria decision models for the five main soil functions were developed, calibrated, and validated using knowledge of involved domain experts and knowledge extracted from existing datasets by data mining. Subsequently, the five DEX models were integrated into a DSS to assess the soil functions simultaneously and to provide management advices for improving the performance of prioritized soil functions. To enable communication between the users and the DSS, we developed a user-friendly computer-based graphical user interface, which enables users to provide the required data regarding their field to the DSS and to get textual and graphical results about the performance of each of the five soil functions in a qualitative way. The final output from the DSS is a list of soil mitigation measures that the end-users could easily apply in the field in order to achieve the desired soil function performance. The Soil Navigator DSS has a great potential to complement the Farm Sustainability Tools for Nutrients included in the Common Agricultural Policy 2021–2027 proposal adopted by the European Commission. The Soil Navigator has also a potential to be spatially upgraded to assist decisions on which soil functions to prioritize in a specific region or member state. Furthermore, the Soil Navigator DSS could be used as an educational tool for farmers, farm advisors, and students, and its potential should be further exploited for the benefit of farmers and the society as a whole

    Apperceptive patterning: Artefaction, extensional beliefs and cognitive scaffolding

    Get PDF
    In “Psychopower and Ordinary Madness” my ambition, as it relates to Bernard Stiegler’s recent literature, was twofold: 1) critiquing Stiegler’s work on exosomatization and artefactual posthumanism—or, more specifically, nonhumanism—to problematize approaches to media archaeology that rely upon technical exteriorization; 2) challenging how Stiegler engages with Giuseppe Longo and Francis Bailly’s conception of negative entropy. These efforts were directed by a prevalent techno-cultural qualifier: the rise of Synthetic Intelligence (including neural nets, deep learning, predictive processing and Bayesian models of cognition). This paper continues this project but first directs a critical analytic lens at the Derridean practice of the ontologization of grammatization from which Stiegler emerges while also distinguishing how metalanguages operate in relation to object-oriented environmental interaction by way of inferentialism. Stalking continental (Kapp, Simondon, Leroi-Gourhan, etc.) and analytic traditions (e.g., Carnap, Chalmers, Clark, Sutton, Novaes, etc.), we move from artefacts to AI and Predictive Processing so as to link theories related to technicity with philosophy of mind. Simultaneously drawing forth Robert Brandom’s conceptualization of the roles that commitments play in retrospectively reconstructing the social experiences that lead to our endorsement(s) of norms, we compliment this account with Reza Negarestani’s deprivatized account of intelligence while analyzing the equipollent role between language and media (both digital and analog)

    Quantum Algorithms for Fermionic Quantum Field Theories

    Get PDF
    Extending previous work on scalar field theories, we develop a quantum algorithm to compute relativistic scattering amplitudes in fermionic field theories, exemplified by the massive Gross-Neveu model, a theory in two spacetime dimensions with quartic interactions. The algorithm introduces new techniques to meet the additional challenges posed by the characteristics of fermionic fields, and its run time is polynomial in the desired precision and the energy. Thus, it constitutes further progress towards an efficient quantum algorithm for simulating the Standard Model of particle physics.Comment: 29 page

    Knowledge in Imperfect Data

    Get PDF

    The Grid Dependence of Well Inflow Performance in Reservoir Simulation

    Get PDF
    Imperial Users onl

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Three-Dimensional Calculation of Contaminant Transport in Groundwater at a Dover AFB Site

    Get PDF
    Macroscale rate-limited sorption modeling was tested using a production transport code, the GMS/FEMWATER ground-water modeling package. The code (Version 1.1 of FEMWATER. dated 1 August 1995) was applied to a 3D conceptual model developed from a field site at Dover AFB, DE. A simulation was performed of a 200 hour contaminant injection pulse followed by clean water flushing. A moment analysis performed on the resulting breakthrough curve validated code self-consistency. Another injection pulse simulation showed that retardation temporally delays the breakthrough peak. Transport simulations of pulsed clean water pumping of the test cell with a prescribed initial contaminant distribution demonstrated both tailing and rebound without any additional microscale modeling. In comparison with both previous numerical solutions and the actual field data from the Dover AFB test site, FEMWATER has demonstrated high numerical dispersivity. For an initial contaminant distribution corresponding to the field data, the FEMWATER breakthrough curve was much flatter than the experimental result, failing to capture the plug-like elution of the field site
    • …
    corecore