1,431 research outputs found

    Performance of the sleep-mode mechanism of the new IEEE 802.16m proposal for correlated downlink traffic

    Get PDF
    There is a considerable interest nowadays in making wireless telecommunication more energy-efficient. The sleep-mode mechanism in WiMAX (IEEE 802.16e) is one of such energy saving measures. Recently, Samsung proposed some modifications on the sleep-mode mechanism, scheduled to appear in the forthcoming IEEE 802.16m standard, aimed at minimizing the signaling overhead. In this work, we present a performance analysis of this proposal and clarify the differences with the standard mechanism included in IEEE 802.16e. We also propose some special algorithms aimed at reducing the computational complexity of the analysis

    Approximate IPA: Trading Unbiasedness for Simplicity

    Full text link
    When Perturbation Analysis (PA) yields unbiased sensitivity estimators for expected-value performance functions in discrete event dynamic systems, it can be used for performance optimization of those functions. However, when PA is known to be unbiased, the complexity of its estimators often does not scale with the system's size. The purpose of this paper is to suggest an alternative approach to optimization which balances precision with computing efforts by trading off complicated, unbiased PA estimators for simple, biased approximate estimators. Furthermore, we provide guidelines for developing such estimators, that are largely based on the Stochastic Flow Modeling framework. We suggest that if the relative error (or bias) is not too large, then optimization algorithms such as stochastic approximation converge to a (local) minimum just like in the case where no approximation is used. We apply this approach to an example of balancing loss with buffer-cost in a finite-buffer queue, and prove a crucial upper bound on the relative error. This paper presents the initial study of the proposed approach, and we believe that if the idea gains traction then it may lead to a significant expansion of the scope of PA in optimization of discrete event systems.Comment: 8 pages, 8 figure

    Applications of stochastic modeling in air traffic management:Methods, challenges and opportunities for solving air traffic problems under uncertainty

    Get PDF
    In this paper we provide a wide-ranging review of the literature on stochastic modeling applications within aviation, with a particular focus on problems involving demand and capacity management and the mitigation of air traffic congestion. From an operations research perspective, the main techniques of interest include analytical queueing theory, stochastic optimal control, robust optimization and stochastic integer programming. Applications of these techniques include the prediction of operational delays at airports, pre-tactical control of aircraft departure times, dynamic control and allocation of scarce airport resources and various others. We provide a critical review of recent developments in the literature and identify promising research opportunities for stochastic modelers within air traffic management

    A retrial discrete-time queueing system with actions in the server

    Get PDF
    This paper considers a discrete-time retrial queueing system with movements. The arriving customers can opt to go directly to the server obtaining immediately their service or to join the orbit. In the first case, if the server is busy, the customer that is in the server is displaced to the orbit. The arrivals follow a geometrical law and the service times are general. We study the Markov chain underlying the considered queueing system obtaining the generating function of the number of customers in the orbit and in the system as well as the stationary distribution of the time that a customer spends in the server. We derive the stochastic decomposition law and as an application we give bounds for the proximity between the steady-state distributions for our queueing system and its corresponding standard system. At time m+ the system can be described by the process (Cm, ξm, Nm) where Cm denotes the state of the server, 0 or 1 according to whether the server is free or busy and Nm the number of repeated customers. If Cm = 1, then ξm represents the remaining service time of the customer currently being served.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    How wireless queues benefit from motion: an analysis of the continuum between zero and infinite mobility

    Full text link
    This paper considers the time evolution of a queue that is embedded in a Poisson point process of moving wireless interferers. The queue is driven by an external arrival process and is subject to a time-varying service process that is a function of the SINR that it sees. Static configurations of interferers result in an infinite queue workload with positive probability. In contrast, a generic stability condition is established for the queue in the case where interferers possess any non-zero mobility that results in displacements that are both independent across interferers and oblivious to interferer positions. The proof leverages the mixing property of the Poisson point process. The effect of an increase in mobility on queueing metrics is also studied. Convex ordering tools are used to establish that faster moving interferers result in a queue workload that is smaller for the increasing-convex stochastic order. As a corollary, mean workload and mean delay decrease as network mobility increases. This stochastic ordering as a function of mobility is explained by establishing positive correlations between SINR level-crossing events at different time points, and by determining the autocorrelation function for interference and observing that it decreases with increasing mobility. System behaviour is empirically analyzed using discrete-event simulation and the performance of various mobility models is evaluated using heavy-traffic approximations.Comment: Preliminary version appeared in WiOPT 2020. New version with revision

    Pedestrian Dynamics: Modeling and Analyzing Cognitive Processes and Traffic Flows to Evaluate Facility Service Level

    Get PDF
    Walking is the oldest and foremost mode of transportation through history and the prevalence of walking has increased. Effective pedestrian model is crucial to evaluate pedestrian facility service level and to enhance pedestrian safety, performance, and satisfaction. The objectives of this study were to: (1) validate the efficacy of utilizing queueing network model, which predicts cognitive information processing time and task performance; (2) develop a generalized queueing network based cognitive information processing model that can be utilized and applied to construct pedestrian cognitive structure and estimate the reaction time with the first moment of service time distribution; (3) investigate pedestrian behavior through naturalistic and experimental observations to analyze the effects of environment settings and psychological factors in pedestrians; and (4) develop pedestrian level of service (LOS) metrics that are quick and practical to identify improvement points in pedestrian facility design. Two empirical and two analytical studies were conducted to address the research objectives. The first study investigated the efficacy of utilizing queueing network in modeling and predicting the cognitive information processing time. Motion capture system was utilized to collect detailed pedestrian movement. The predicted reaction time using queueing network was compared with the results from the empirical study to validate the performance of the model. No significant difference between model and empirical results was found with respect to mean reaction time. The second study endeavored to develop a generalized queueing network system so the task can be modeled with the approximated queueing network and its first moment of any service time distribution. There was no significant difference between empirical study results and the proposed model with respect to mean reaction time. Third study investigated methods to quantify pedestrian traffic behavior, and analyze physical and cognitive behavior from the real-world observation and field experiment. Footage from indoor and outdoor corridor was used to quantify pedestrian behavior. Effects of environmental setting and/or psychological factor on travel performance were tested. Finally, adhoc and tailor-made LOS metrics were presented for simple realistic service level assessments. The proposed methodologies were composed of space revision LOS, delay-based LOS, preferred walking speed-based LOS, and ‘blocking probability’
    • …
    corecore