21 research outputs found

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Single server retrial queueing models.

    Get PDF
    Most retrial queueing research assumes that each retrial customer has its own orbit, and the retrial customers retry to enter service independently of each other. A small selection of papers assume that the retrial customers themselves form a queue, and only one customer from the retrial queue can attempt to enter at any given time. Retrial queues with exponential retrial times have been extensively studied, but little attention has been paid to retrial queues with general retrial times. In this thesis, we consider four retrial queueing models of the type in which the retrial customers form their own queue. Model I is a type of M/G/1 retrial queue with general retrial times and server subject to breakdowns and repairs. In addition, we allow the customer in service to leave the service position and keep retrying for service until the server has been repaired. After repair, the server is not allowed to begin service on other customers until the current customer (in service) returns from its temporary absence. We say that the server is in reserved mode, when the current customer is absent and the server has already been repaired. We define the server to be blocked if the server is busy, under repair or in reserved mode. In Model II, we consider a single unreliable server retrial queue with general retrial times and balking customers. If an arriving primary customer finds the server blocked, the customer either enters a retrial queue with probability p or leaves the system with probability 1 - p. An unsuccessful arriving customer from the retrial queue either returns to its position at the head of the retrial queue with probability q or leaves the system with the probability 1 - q. If the server fails, the customer in service either remains in service with probability r or enters a retrial service orbit with probability 1 - r and keeps returning until the server is repaired. We give a formal description for these two retrial queueing models, with examples. The stability of the system is analyzed by using an embedded Markov chain. We get a necessary and sufficient condition for the ergodicity of the embedded Markov chain. By employing the method of supplementary variables, we describe the state of the system at each point in time. A system of partial differential equations related to the models is derived from a stochastic analysis of the model. The steady state distribution of the system is obtained by means of probability generating functions. In steady state, some performance measures of the system are reported, the distribution of some important performance characteristics in the waiting process are investigated, and the busy period is discussed. In addition, some numerical results are given. Model III consists of a single-server retrial queue with two primary sources and both a retrial queue and retrial orbits. Some results are obtained using matrix analytic methods. Also simulation results are obtained. Model IV consists of a single server system in which the retrial customers form a queue. The service times are discrete. A stability condition and performance measures are presented.Dept. of Mathematics and Statistics. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .W87. Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3883. Thesis (Ph.D.)--University of Windsor (Canada), 2006

    Unreliable Retrial Queues in a Random Environment

    Get PDF
    This dissertation investigates stability conditions and approximate steady-state performance measures for unreliable, single-server retrial queues operating in a randomly evolving environment. In such systems, arriving customers that find the server busy or failed join a retrial queue from which they attempt to regain access to the server at random intervals. Such models are useful for the performance evaluation of communications and computer networks which are characterized by time-varying arrival, service and failure rates. To model this time-varying behavior, we study systems whose parameters are modulated by a finite Markov process. Two distinct cases are analyzed. The first considers systems with Markov-modulated arrival, service, retrial, failure and repair rates assuming all interevent and service times are exponentially distributed. The joint process of the orbit size, environment state, and server status is shown to be a tri-layered, level-dependent quasi-birth-and-death (LDQBD) process, and we provide a necessary and sufficient condition for the positive recurrence of LDQBDs using classical techniques. Moreover, we apply efficient numerical algorithms, designed to exploit the matrix-geometric structure of the model, to compute the approximate steady-state orbit size distribution and mean congestion and delay measures. The second case assumes that customers bring generally distributed service requirements while all other processes are identical to the first case. We show that the joint process of orbit size, environment state and server status is a level-dependent, M/G/1-type stochastic process. By employing regenerative theory, and exploiting the M/G/1-type structure, we derive a necessary and sufficient condition for stability of the system. Finally, for the exponential model, we illustrate how the main results may be used to simultaneously select mean time customers spend in orbit, subject to bound and stability constraints

    On Mx / G(M/H)/1 Retrial System with Vacation: Service Helpline Performance Measurement

    Get PDF
    This paper analyzes an unreliable MX/G(M/H)/1MX/G(M/H)/1 retrial system with vacation. We present closed-form expressions for the important performance indicators of the system, and derive the optimal vacation policies for minimizing the average waiting time of orbiting customers. The performance metrics relevant for helpline services are developed. Numerical experiments are conducted to examine the effect of vacation policy on the queue length and busy period of the system

    Modelling activities in a Critical Care Unit

    Get PDF
    The Critical Care Unit (CCU) is the sector of the hospital where, as the name suggests, critically ill patients receive treatment. The main aim of this research is to identify and apply suitable Operational Research techniques to model patient flow in the CCU at the University Hospital of Wales, Cardiff. The Operational Research techniques employed in this thesis include queueing theory and simulation. These methods have been utilised previously in the field of healthcare with much success. The thesis begins by considering two aspects of queueing theory, namely batch service queueing theory and batch arrival queueing theory. The latter of these is utilised to model patient flow within the CCU. Although queueing theory may be used as a good approximation to activities in the Unit, it does not incorporate all aspects of real-life. Thus discrete-event simulation is suggested as an alternative approach. Two types of statistical analysis, CART and Regression, are applied to both length of stay and mortality variables. The results from these statistical tests are compiled and investigated in more depth. Finally, a discrete event simulation model is built in Visual Basic for Applications, for Microsoft Excel. This simulation model incorporates many of the complexities of a CCU, such as patient priority and cancellation of scheduled patients if all beds on the Unit are occupied. The model is then used to test various "what-if type" scenarios, including the possibility of funding additional beds, the concept of ring-fencing of beds for different levels of care, and the likely effect of reducing the impact of bed-blocking

    Energieeffiziente und rechtzeitige Ereignismeldung mittels drahtloser Sensornetze

    Get PDF
    This thesis investigates the suitability of state-of-the-art protocols for large-scale and long-term environmental event monitoring using wireless sensor networks based on the application scenario of early forest fire detection. By suitable combination of energy-efficient protocol mechanisms a novel communication protocol, referred to as cross-layer message-merging protocol (XLMMP), is developed. Qualitative and quantitative protocol analyses are carried out to confirm that XLMMP is particularly suitable for this application area. The quantitative analysis is mainly based on finite-source retrial queues with multiple unreliable servers. While this queueing model is widely applicable in various research areas even beyond communication networks, this thesis is the first to determine the distribution of the response time in this model. The model evaluation is mainly carried out using Markovian analysis and the method of phases. The obtained quantitative results show that XLMMP is a feasible basis to design scalable wireless sensor networks that (1) may comprise hundreds of thousands of tiny sensor nodes with reduced node complexity, (2) are suitable to monitor an area of tens of square kilometers, (3) achieve a lifetime of several years. The deduced quantifiable relationships between key network parameters — e.g., node size, node density, size of the monitored area, aspired lifetime, and the maximum end-to-end communication delay — enable application-specific optimization of the protocol

    Оценка точности восстановления координат при моделировании трехмерных объектов с использованием стереоизображений

    Get PDF
    Необходимость реконструкции трехмерных координат возникает в задачах распознавания, в которых требуется восстановить форму изображенного объекта. Один из способов решения задачи базируется на использовании модели системы технического зрения, описывающей формирование стереопары изображений. Параметры такой модели задаются матрицами преобразования однородных координат сцены. Для калибровки модели могут быть использованы тестовые стереоизображения, сделанные в разных ракурсах, для шести точек которых известны координаты соответствующих им точек сцены. Точность восстановления координат точек поверхности изображенного объекта (при условии удачного распознавания соответствующих им точек стереопары изображений) обуславливается, главным образом, точностью калибровки модели технического зрения. Оценка погрешностей позволяет построить тетраэдр, во внутренней области которого лежит точка поверхности трехмерного тела, соответствующая распознанной точке стереоизображения
    corecore