550 research outputs found

    Exact Algorithm for Sampling the 2D Ising Spin Glass

    Get PDF
    A sampling algorithm is presented that generates spin glass configurations of the 2D Edwards-Anderson Ising spin glass at finite temperature, with probabilities proportional to their Boltzmann weights. Such an algorithm overcomes the slow dynamics of direct simulation and can be used to study long-range correlation functions and coarse-grained dynamics. The algorithm uses a correspondence between spin configurations on a regular lattice and dimer (edge) coverings of a related graph: Wilson's algorithm [D. B. Wilson, Proc. 8th Symp. Discrete Algorithms 258, (1997)] for sampling dimer coverings on a planar lattice is adapted to generate samplings for the dimer problem corresponding to both planar and toroidal spin glass samples. This algorithm is recursive: it computes probabilities for spins along a "separator" that divides the sample in half. Given the spins on the separator, sample configurations for the two separated halves are generated by further division and assignment. The algorithm is simplified by using Pfaffian elimination, rather than Gaussian elimination, for sampling dimer configurations. For n spins and given floating point precision, the algorithm has an asymptotic run-time of O(n^{3/2}); it is found that the required precision scales as inverse temperature and grows only slowly with system size. Sample applications and benchmarking results are presented for samples of size up to n=128^2, with fixed and periodic boundary conditions.Comment: 18 pages, 10 figures, 1 table; minor clarification

    Dimers and the Critical Ising Model on Lattices of genus>1

    Get PDF
    We study the partition function of both Close-Packed Dimers and the Critical Ising Model on a square lattice embedded on a genus two surface. Using numerical and analytical methods we show that the determinants of the Kasteleyn adjacency matrices have a dependence on the boundary conditions that, for large lattice size, can be expressed in terms of genus two theta functions. The period matrix characterizing the continuum limit of the lattice is computed using a discrete holomorphic structure. These results relate in a direct way the lattice combinatorics with conformal field theory, providing new insight to the lattice regularization of conformal field theories on higher genus Riemann Surfaces.Comment: 44 pages, eps figures included; typos corrected, figure and comments added to section

    Matching Kasteleyn Cities for Spin Glass Ground States

    Get PDF
    As spin glass materials have extremely slow dynamics, devious numerical methods are needed to study low-temperature states. A simple and fast optimization version of the classical Kasteleyn treatment of the Ising model is described and applied to two-dimensional Ising spin glasses. The algorithm combines the Pfaffian and matching approaches to directly strip droplet excitations from an excited state. Extended ground states in Ising spin glasses on a torus, which are optimized over all boundary conditions, are used to compute precise values for ground state energy densities.Comment: 4 pages, 2 figures; minor clarification

    A generalized Kac-Ward formula

    Full text link
    The Kac-Ward formula allows to compute the Ising partition function on a planar graph G with straight edges from the determinant of a matrix of size 2N, where N denotes the number of edges of G. In this paper, we extend this formula to any finite graph: the partition function can be written as an alternating sum of the determinants of 2^{2g} matrices of size 2N, where g is the genus of an orientable surface in which G embeds. We give two proofs of this generalized formula. The first one is purely combinatorial, while the second relies on the Fisher-Kasteleyn reduction of the Ising model to the dimer model, and on geometric techniques. As a consequence of this second proof, we also obtain the following fact: the Kac-Ward and the Fisher-Kasteleyn methods to solve the Ising model are one and the same.Comment: 23 pages, 8 figures; minor corrections in v2; to appear in J. Stat. Mech. Theory Ex

    Discrete Dirac Operators, Critical Embeddings and Ihara-Selberg Functions

    Full text link
    The aim of the paper is to formulate a discrete analogue of the claim made by Alvarez-Gaume et al., realizing the partition function of the free fermion on a closed Riemann surface of genus g as a linear combination of 2^{2g} Pfaffians of Dirac operators. Let G=(V,E) be a finite graph embedded in a closed Riemann surface X of genus g, x_e the collection of independent variables associated with each edge e of G (collected in one vector variable x) and S the set of all 2^{2g} Spin-structures on X. We introduce 2^{2g} rotations rot_s and (2|E| times 2|E|) matrices D(s)(x), s in S, of the transitions between the oriented edges of G determined by rotations rot_s. We show that the generating function for the even subsets of edges of G, i.e., the Ising partition function, is a linear combination of the square roots of 2^{2g} Ihara-Selberg functions I(D(s)(x)) also called Feynman functions. By a result of Foata--Zeilberger holds I(D(s)(x))= det(I-D'(s)(x)), where D'(s)(x) is obtained from D(s)(x) by replacing some entries by 0. Thus each Feynman function is computable in polynomial time. We suggest that in the case of critical embedding of a bipartite graph G, the Feynman functions provide suitable discrete analogues for the Pfaffians of discrete Dirac operators

    The 3D Dimer and Ising Problems Revisited

    Get PDF
    We express the finite 3D Dimer partition function as a linear combination of determinants of oriented adjacency matrices, and the finite 3D Ising partition sum as a linear combination of products over aperiodic closed walks. The methodology we use is embedding of cubic lattice on 2D surfaces of large genus

    Planar Ising model at criticality: state-of-the-art and perspectives

    Full text link
    In this essay, we briefly discuss recent developments, started a decade ago in the seminal work of Smirnov and continued by a number of authors, centered around the conformal invariance of the critical planar Ising model on Z2\mathbb{Z}^2 and, more generally, of the critical Z-invariant Ising model on isoradial graphs (rhombic lattices). We also introduce a new class of embeddings of general weighted planar graphs (s-embeddings), which might, in particular, pave the way to true universality results for the planar Ising model.Comment: 19 pages (+ references), prepared for the Proceedings of ICM2018. Second version: two references added, a few misprints fixe

    Lateral critical Casimir force in two-dimensional inhomogeneous Ising strip. Exact results

    Full text link
    We consider two-dimensional Ising strip bounded by two planar, inhomogeneous walls. The inhomogeneity of each wall is modeled by a magnetic field acting on surface spins. It is equal to +h1+h_1 except for a group of N1N_1 sites where it is equal to h1-h_1. The inhomogeneities of the upper and lower wall are shifted with respect to each other by a lateral distance LL. Using exact diagonalization of the transfer matrix, we study both the lateral and normal critical Casimir forces as well as magnetization profiles for a wide range of temperatures and system parameters. The lateral critical Casimir force tends to reduce the shift between the inhomogeneities, and the excess normal force is attractive. Upon increasing the shift LL we observe, depending on the temperature, three different scenarios of breaking of the capillary bridge of negative magnetization connecting the inhomogeneities of the walls across the strip. As long as there exists a capillary bridge in the system, the magnitude of the excess total critical Casimir force is almost constant, with its direction depending on LL. By investigating the bridge morphologies we have found a relation between the point at which the bridge breaks and the inflection point of the force. We provide a simple argument that some of the properties reported here should also hold for a whole range of different models of the strip with the same type of inhomogeneity
    corecore