3,043 research outputs found

    An exactly solved model for mutation, recombination and selection

    Full text link
    It is well known that rather general mutation-recombination models can be solved algorithmically (though not in closed form) by means of Haldane linearization. The price to be paid is that one has to work with a multiple tensor product of the state space one started from. Here, we present a relevant subclass of such models, in continuous time, with independent mutation events at the sites, and crossover events between them. It admits a closed solution of the corresponding differential equation on the basis of the original state space, and also closed expressions for the linkage disequilibria, derived by means of M\"obius inversion. As an extra benefit, the approach can be extended to a model with selection of additive type across sites. We also derive a necessary and sufficient criterion for the mean fitness to be a Lyapunov function and determine the asymptotic behaviour of the solutions.Comment: 48 page

    Haldane linearisation done right: Solving the nonlinear recombination equation the easy way

    Full text link
    The nonlinear recombination equation from population genetics has a long history and is notoriously difficult to solve, both in continuous and in discrete time. This is particularly so if one aims at full generality, thus also including degenerate parameter cases. Due to recent progress for the continuous time case via the identification of an underlying stochastic fragmentation process, it became clear that a direct general solution at the level of the corresponding ODE itself should also be possible. This paper shows how to do it, and how to extend the approach to the discrete-time case as well.Comment: 12 pages, 1 figure; some minor update

    Modeling sequences and temporal networks with dynamic community structures

    Full text link
    In evolving complex systems such as air traffic and social organizations, collective effects emerge from their many components' dynamic interactions. While the dynamic interactions can be represented by temporal networks with nodes and links that change over time, they remain highly complex. It is therefore often necessary to use methods that extract the temporal networks' large-scale dynamic community structure. However, such methods are subject to overfitting or suffer from effects of arbitrary, a priori imposed timescales, which should instead be extracted from data. Here we simultaneously address both problems and develop a principled data-driven method that determines relevant timescales and identifies patterns of dynamics that take place on networks as well as shape the networks themselves. We base our method on an arbitrary-order Markov chain model with community structure, and develop a nonparametric Bayesian inference framework that identifies the simplest such model that can explain temporal interaction data.Comment: 15 Pages, 6 figures, 2 table
    • …
    corecore