8,678 research outputs found

    Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues

    Get PDF
    The development of new models of biological tissues that consider cells in a discrete manner is becoming increasingly popular as an alternative to PDE-based continuum methods, although formal relationships between the discrete and continuum frameworks remain to be established. For crystal mechanics, the discrete-to-continuum bridge is often made by assuming that local atom displacements can be mapped homogeneously from the mesoscale deformation gradient, an assumption known as the Cauchy-Born rule (CBR). Although the CBR does not hold exactly for non-crystalline materials, it may still be used as a first order approximation for analytic calculations of effective stresses or strain energies. In this work, our goal is to investigate numerically the applicability of the CBR to 2-D cellular-scale models by assessing the mechanical behaviour of model biological tissues, including crystalline (honeycomb) and non-crystalline reference states. The numerical procedure consists in precribing an affine deformation on the boundary cells and computing the position of internal cells. The position of internal cells is then compared with the prediction of the CBR and an average deviation is calculated in the strain domain. For centre-based models, we show that the CBR holds exactly when the deformation gradient is relatively small and the reference stress-free configuration is defined by a honeycomb lattice. We show further that the CBR may be used approximately when the reference state is perturbed from the honeycomb configuration. By contrast, for vertex-based models, a similar analysis reveals that the CBR does not provide a good representation of the tissue mechanics, even when the reference configuration is defined by a honeycomb lattice. The paper concludes with a discussion of the implications of these results for concurrent discrete/continuous modelling, adaptation of atom-to-continuum (AtC) techniques to biological tissues and model classification

    On the problem of the relation between phason elasticity and phason dynamics in quasicrystals

    Full text link
    It has recently been claimed that the dynamics of long-wavelength phason fluctuations has been observed in i-AlPdMn quasicrystals. We will show that the data reported call for a more detailed development of the elasticity theory of Jaric and Nelsson in order to determine the nature of small phonon-like atomic displacements with a symmetry that follows the phason elastic constants. We also show that a simple model with a single diffusing tile is sufficient to produce a signal that (1) is situated at a "satellite position'' at a distance q from each Bragg peak, that (2) has an intensity that scales with the intensity of the corresponding Bragg peak, (3) falls off as 1/q-squared and (4) has a time decay constant that is proportional to 1/(D q-squared). It is thus superfluous to call for a picture of "phason waves'' in order to explain such data, especially as such "waves'' violate many physical principles.Comment: 36 pages, 0 figures, discussion about vacancies, fluctuating Fourier components, and difference between static and dynamical structure factors added, other addition

    Cohesive Dynamics and Brittle Fracture

    Full text link
    We formulate a nonlocal cohesive model for calculating the deformation state inside a cracking body. In this model a more complete set of physical properties including elastic and softening behavior are assigned to each point in the medium. We work within the small deformation setting and use the peridynamic formulation. Here strains are calculated as difference quotients. The constitutive relation is given by a nonlocal cohesive law relating force to strain. At each instant of the evolution we identify a process zone where strains lie above a threshold value. Perturbation analysis shows that jump discontinuities within the process zone can become unstable and grow. We derive an explicit inequality that shows that the size of the process zone is controlled by the ratio given by the length scale of nonlocal interaction divided by the characteristic dimension of the sample. The process zone is shown to concentrate on a set of zero volume in the limit where the length scale of nonlocal interaction vanishes with respect to the size of the domain. In this limit the dynamic evolution is seen to have bounded linear elastic energy and Griffith surface energy. The limit dynamics corresponds to the simultaneous evolution of linear elastic displacement and the fracture set across which the displacement is discontinuous. We conclude illustrating how the approach developed here can be applied to limits of dynamics associated with other energies that Γ\Gamma- converge to the Griffith fracture energy.Comment: 38 pages, 4 figures, typographical errors corrected, removed section 7 of previous version and added section 8 to the current version, changed title to Cohesive Dynamics and Brittle Fracture. arXiv admin note: text overlap with arXiv:1305.453

    Fast Isogeometric Boundary Element Method based on Independent Field Approximation

    Full text link
    An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries and a significant reduction of the right hand side of the system of equations for common boundary conditions. All these benefits are achieved without any loss of accuracy compared to conventional isogeometric formulations. The system matrices are approximated by means of hierarchical matrices to reduce the computational complexity for large scale analysis. For the required geometrical bisection of the domain, a strategy for the evaluation of bounding boxes containing the supports of NURBS basis functions is presented. The versatility and accuracy of the proposed methodology is demonstrated by convergence studies showing optimal rates and real world examples in two and three dimensions.Comment: 32 pages, 27 figure

    Gradient Schemes for Linear and Non-linear Elasticity Equations

    Full text link
    The Gradient Scheme framework provides a unified analysis setting for many different families of numerical methods for diffusion equations. We show in this paper that the Gradient Scheme framework can be adapted to elasticity equations, and provides error estimates for linear elasticity and convergence results for non-linear elasticity. We also establish that several classical and modern numerical methods for elasticity are embedded in the Gradient Scheme framework, which allows us to obtain convergence results for these methods in cases where the solution does not satisfy the full H2H^2-regularity or for non-linear models

    Integrated transient thermal-structural finite element analysis

    Get PDF
    An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses

    Algebraic Topology-Based Image Deformation : a Unified Model

    Get PDF
    In this paper, a new method for image deformation is presented. It is based upon decomposition of the deformation problem into basic physical laws. Unlike other methods that solve a differential or an energetic formulation of the physical laws involved, we encode the basic laws using computational algebraic topology. Conservative laws are translated into exact global values and constitutive laws are judiciously approximated. In order to illustrate the effectiveness of our model, we deal with both small- and large-scale deformation, utilizing elasticity theory and the viscous fluid model, respectively. The proposed approach is validated through a series of tests on optical flow estimation and image registration
    corecore