331 research outputs found

    Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere

    Full text link
    We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer depth, the discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection equation through a Taylor-Galerkin scheme; this provides a mechanism for dissipating enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind discontinuous Galerkin schemes for the transport of layer depth. These transport schemes are incorporated into a semi-implicit formulation that is facilitated by a hybridisation method for solving the resulting mixed Helmholtz equation. We illustrate our discretisation with some standard rotating sphere test problems.Comment: accepted versio

    Computational Engineering

    Get PDF
    The focus of this Computational Engineering Workshop was on the mathematical foundation of state-of-the-art and emerging finite element methods in engineering analysis. The 52 participants included mathematicians and engineers with shared interest on discontinuous Galerkin or Petrov-Galerkin methods and other generalized nonconforming or mixed finite element methods

    A multiscale method for heterogeneous bulk-surface coupling

    Full text link
    In this paper, we construct and analyze a multiscale (finite element) method for parabolic problems with heterogeneous dynamic boundary conditions. As origin, we consider a reformulation of the system in order to decouple the discretization of bulk and surface dynamics. This allows us to combine multiscale methods on the boundary with standard Lagrangian schemes in the interior. We prove convergence and quantify explicit rates for low-regularity solutions, independent of the oscillatory behavior of the heterogeneities. As a result, coarse discretization parameters, which do not resolve the fine scales, can be considered. The theoretical findings are justified by a number of numerical experiments including dynamic boundary conditions with random diffusion coefficients

    A survey of mixed finite element methods

    Get PDF
    This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem

    Least-squares finite element method for fluid dynamics

    Get PDF
    An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples

    Breaking spaces and forms for the DPG method and applications including Maxwell equations

    Get PDF
    Discontinuous Petrov Galerkin (DPG) methods are made easily implementable using `broken' test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. The technique also permits considerable simplifications of previous analyses of DPG methods for other equations. Reliability and efficiency estimates for an error indicator also follow. Finally, the equivalence of stability for various formulations of the same Maxwell problem is proved, including the strong form, the ultraweak form, and a spectrum of forms in between
    corecore