1,162 research outputs found

    A discontinuous Galerkin time-stepping scheme for the velocity tracking problem

    Get PDF
    The velocity tracking problem for the evolutionary Navier–Stokes equations in two dimensions is studied. The controls are of distributed type and are submitted to bound constraints. First and second order necessary and sufficient conditions are proved. A fully discrete scheme based on the discontinuous (in time) Galerkin approach, combined with conforming finite element subspaces in space, is proposed and analyzed. Provided that the time and space discretization parameters, τ and h, respectively, satisfy τ ≤ Ch2 , then L 2 error estimates of order O(h) are proved for the difference between the locally optimal controls and their discrete approximations.This author’s work was partially supported by the Spanish Ministerio de Economía y Competitividad under project MTM2011-2271

    Simulation of rock salt dissolution and its impact on land subsidence

    Get PDF
    Extensive land subsidence can occur due to subsurface dissolution of evaporites such as halite and gypsum. This paper explores techniques to simulate the salt dissolution forming an intrastratal karst, which is embedded in a sequence of carbonates, marls, anhydrite and gypsum. A numerical model is developed to simulate laminar flow in a subhorizontal void, which corresponds to an opening intrastratal karst. The numerical model is based on the laminar steady-state Stokes flow equation, and the advection dispersion transport equation coupled with the dissolution equation. The flow equation is solved using the nonconforming Crouzeix-Raviart (CR) finite element approximation for the Stokes equation. For the transport equation, a combination between discontinuous Galerkin method and multipoint flux approximation method is proposed. The numerical effect of the dissolution is considered by using a dynamic mesh variation that increases the size of the mesh based on the amount of dissolved salt. The numerical method is applied to a 2D geological cross section representing a Horst and Graben structure in the Tabular Jura of northwestern Switzerland. The model simulates salt dissolution within the geological section and predicts the amount of vertical dissolution as an indicator of potential subsidence that could occur. Simulation results showed that the highest dissolution amount is observed near the normal fault zones, and, therefore, the highest subsidence rates are expected above normal fault zones

    A space-time discontinuous Galerkin finite element method for two-fluid problems

    Get PDF
    A space-time discontinuous Galerkin finite element method for two fluid flow problems is presented. By using a combination of level set and cut-cell methods the interface between two fluids is tracked in space-time. The movement of the interface in space-time is calculated by solving the level set equation, where the interface geometry is identified with the 0-level set. To enhance the accuracy of the interface approximation the level set function is advected with the interface velocity, which for this purpose is extended into the domain. Close to the interface the mesh is locally refined in such a way that the 0-level set coincides with a set of faces in the mesh. The two fluid flow equations are solved on this refined mesh. The procedure is repeated until both the mesh and the flow solution have converged to a reasonable accuracy.\ud The method is tested on linear advection and Euler shock tube problems involving ideal gas and compressible bubbly magma. Oscillations around the interface are eliminated by choosing a suitable interface flux

    A comparative study of the efficiency of jet schemes

    Full text link
    We present two versions of third order accurate jet schemes, which achieve high order accuracy by tracking derivative information of the solution along characteristic curves. For a benchmark linear advection problem, the efficiency of jet schemes is compared with WENO and Discontinuous Galerkin methods of the same order. Moreover, the performance of various schemes in tracking solution contours is investigated. It is demonstrated that jet schemes possess the simplicity and speed of WENO schemes, while showing several of the advantages as well as the accuracy of DG methods.Comment: 12 pages, 6 figures, presented at the conference Mathematical Modeling and Applications to Industrial Problems 201
    corecore