17,344 research outputs found

    A face-centred finite volume method for second-order elliptic problems

    Get PDF
    This work proposes a novel finite volume paradigm, the face-centred finite volume (FCFV) method. Contrary to the popular vertex (VCFV) and cell (CCFV) centred finite volume methods, the novel FCFV defines the solution on the mesh faces (edges in 2D) to construct locally-conservative numerical schemes. The idea of the FCFV method stems from a hybridisable discontinuous Galerkin (HDG) formulation with constant degree of approximation, thus inheriting the convergence properties of the classical HDG. The resulting FCFV features a global problem in terms of a piecewise constant function defined on the faces of the mesh. The solution and its gradient in each element are then recovered by solving a set of independent element-by-element problems. The mathematical formulation of FCFV for Poisson and Stokes equation is derived and numerical evidence of optimal convergence in 2D and 3D is provided. Numerical examples are presented to illustrate the accuracy, efficiency and robustness of the proposed methodology. The results show that, contrary to other FV methods, the accuracy of the FCFV method is not sensitive to mesh distortion and stretching. In addition, the FCFV method shows its better performance, accuracy and robustness using simplicial elements, facilitating its application to problems involving complex geometries in 3D

    A face-centred finite volume method for second-order elliptic problems

    Get PDF
    This work proposes a novel finite volume paradigm, ie, the face‐centred finite volume (FCFV) method. Contrary to the popular vertex and cell‐centred finite volume methods, the novel FCFV defines the solution on the mesh faces (edges in two dimensions) to construct locally conservative numerical schemes. The idea of the FCFV method stems from a hybridisable discontinuous Galerkin formulation with constant degree of approximation, and thus inheriting the convergence properties of the classical hybridisable discontinuous Galerkin. The resulting FCFV features a global problem in terms of a piecewise constant function defined on the faces of the mesh. The solution and its gradient in each element are then recovered by solving a set of independent element‐by‐element problems. The mathematical formulation of FCFV for Poisson and Stokes equation is derived, and numerical evidence of optimal convergence in two dimensions and three dimensions is provided. Numerical examples are presented to illustrate the accuracy, efficiency, and robustness of the proposed methodology. The results show that, contrary to other finite volume methods, the accuracy of the FCFV method is not sensitive to mesh distortion and stretching. In addition, the FCFV method shows its better performance, accuracy, and robustness using simplicial elements, facilitating its application to problems involving complex geometries in three dimensions

    Numerical methods for partial differential equations

    Get PDF
    Many physical phenomena can be modeled by partial differential equations, such as Euler equations and Navier–Stokes equations. However, most cases, we cannot find the exact solutions, hence numerical methods are needed to approximate them. In my work, I use discontinuous Galerkin methods (a kind of finite element method) and finite volume methods to solve hyperbolic and parabolic equations—especially for problems with strong singularities, such as delta-functions. Moreover, some of the physical bounds will be preserved, such as the positivity of the density, maximum-principle of the velocity etc. Some of the problems I am working on include compressible gas dynamics, miscible displacement in porous media, combustion, chemotaxis, radiative transfer equations. Some future works include numerical simulations in traffic flow, numerical cosmology, tsunami and hurricane prediction etc.https://digitalcommons.mtu.edu/techtalks/1002/thumbnail.jp

    Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity

    Get PDF
    Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approximations and devise the hybridizable discontinuous Galerkin (HDG) method. Exact geometry described by non-uniform rational B-splines (NURBS) is integrated into HDG using the framework of the NURBS-enhanced finite element method (NEFEM). Moreover, optimal convergence and superconvergence properties of HDG-Voigt formulation in presence of symmetric second-order tensors are exploited to construct inexpensive error indicators and drive degree adaptive procedures. Applications involving the numerical simulation of problems in electrostatics, linear elasticity and incompressible viscous flows are presented. Moreover, this is done for both high-order HDG approximations and the lowest-order framework of face-centered finite volumes (FCFV).Peer ReviewedPostprint (author's final draft

    Finite volume method for general multifluid flows governed by the interface Stokes problem

    Get PDF
    International audienceWe study the approximation of solutions to the stationary Stokes problem with a piecewise constant viscosity coefficient (interface Stokes problem) in the discrete duality finite volume (DDFV) framework. In order to take into account the discontinuities and to prevent consistency defect in the scheme, we propose to modify the definition of the numerical fluxes on the edges of the mesh where the discontinuity occurs. We first show how to design our new scheme, called m-DDFV, and we analyze the well-posedness of the scheme and its convergence properties. Finally, we provide numerical results which confirm that the m-DDFV scheme significantly improves the convergence rate of the usual DDFV method for Stokes problems with discontinuous viscosity

    Discontinuous Galerkin Method Applied to Navier-Stokes Equations

    Get PDF
    Discontinuous Galerkin (DG) finite element methods are becoming important techniques for the computational solution of many real-world problems describe by differential equations. They combine many attractive features of the finite element and the finite volume methods. These methods have been successfully applied to many important PDEs arising from a wide range of applications. DG methods are highly accurate numerical methods and have considerable advantages over the classical numerical methods available in the literature. DG methods can easily handle meshes with hanging nodes, elements of various types and shapes, and local spaces of different orders. Furthermore, DG methods provide accurate and efficient simulation of physical and engineering problems, especially in settings where the solutions exhibit poor regularity. For these reasons, they have attracted the attention of many researchers working in diverse areas, from computational fluid dynamics, solid mechanics and optimal control, to finance, biology and geology. In this talk, we give an overview of the main features of DG methods and their extensions. We first introduce the DG method for solving classical differential equations. Then, we extend the methods to other equations such as Navier-Stokes equations. The Navier-Stokes equations are useful because they describe the physics of many phenomena of scientific and engineering interest. They may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing
    • 

    corecore