2,009 research outputs found

    An embedded-hybridized discontinuous Galerkin method for the coupled Stokes-Darcy system

    Full text link
    We introduce an embedded-hybridized discontinuous Galerkin (EDG-HDG) method for the coupled Stokes-Darcy system. This EDG-HDG method is a pointwise mass-conserving discretization resulting in a divergence-conforming velocity field on the whole domain. In the proposed scheme, coupling between the Stokes and Darcy domains is achieved naturally through the EDG-HDG facet variables. \emph{A priori} error analysis shows optimal convergence rates, and that the velocity error does not depend on the pressure. The error analysis is verified through numerical examples on unstructured grids for different orders of polynomial approximation

    Numerical Computations with H(div)-Finite Elements for the Brinkman Problem

    Full text link
    The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in previous work of the authors. Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.Comment: Minor clarifications, added references. Reordering of some figures. To appear in Computational Geosciences, final article available at http://www.springerlink.co

    A numerical study of fluids with pressure dependent viscosity flowing through a rigid porous medium

    Full text link
    In this paper we consider modifications to Darcy's equation wherein the drag coefficient is a function of pressure, which is a realistic model for technological applications like enhanced oil recovery and geological carbon sequestration. We first outline the approximations behind Darcy's equation and the modifications that we propose to Darcy's equation, and derive the governing equations through a systematic approach using mixture theory. We then propose a stabilized mixed finite element formulation for the modified Darcy's equation. To solve the resulting nonlinear equations we present a solution procedure based on the consistent Newton-Raphson method. We solve representative test problems to illustrate the performance of the proposed stabilized formulation. One of the objectives of this paper is also to show that the dependence of viscosity on the pressure can have a significant effect both on the qualitative and quantitative nature of the solution
    • …
    corecore