719 research outputs found

    Preserving Established Communications in IPv6 Multi-homed Sites with MEX

    Get PDF
    This research was supported by the SAM (Advanced Mobility Services) project, funded by the Spanish National R&D Programme under contract MCYT TIC2002-04531-C04-03.A proper support for multimedia communications transport has to provide fault tolerance capabilities such as the preservation of established connections in case of failures. While multi-homing addresses this issue, the currently available solution based in massive BGP route injection presents serious scalability limitations, since it contributes to the exponential growth of the BGP table size. Alternative solutions proposed for IPv6 fail to provide equivalent facilities to the current BGP based solution. In this paper we present MEX (Muti-homing through EXtension header) a novel proposal for the provision of IPv6 multi-homing capabilities. MEX preserves overall scalability by storing alternative route information in end-hosts while at the same time reduces packet loss by allowing routers to re-route in-course packets. This behavior is enabled by conveying alternative route information within packets inside a newly defined Extension Header. The resulting system provides fault tolerance capabilities and preserves scalability, while the incurred costs, namely deployment and packet overhead, are only imposed to those that benefit from it. An implementation of the MEX host and router components is also presented.Publicad

    BGP-like TE Capabilities for SHIM6

    Get PDF
    In this paper we present a comprehensive set of mechanisms that restore to the site administrator the capacity of enforcing traffic engineering (TE) policies in a multiaddressed IPv6 scenario. The mechanisms rely on the ability of SHIM6 to securely perform locator changes in a transparent fashion to transport and application layers. Once an outgoing path has been selected for a communication by proper routing configuration in the site, the source prefix of SHIM6 data packets is rewritten by the site routers to avoid packet discarding due to ingress filtering. The SHIM6 locator preferences exchanged in the context establishment phase are modified by the site routers to influence in the path used for receiving traffic. Scalable deployment is ensured by the stateless nature of these mechanisms.Publicad

    Source-specific routing

    Get PDF
    Source-specific routing (not to be confused with source routing) is a routing technique where routing decisions depend on both the source and the destination address of a packet. Source-specific routing solves some difficult problems related to multihoming, notably in edge networks, and is therefore a useful addition to the multihoming toolbox. In this paper, we describe the semantics of source-specific packet forwarding, and describe the design and implementation of a source-specific extension to the Babel routing protocol as well as its implementation - to our knowledge, the first complete implementation of a source-specific dynamic routing protocol, including a disambiguation algorithm that makes our implementation work over widely available networking APIs. We further discuss interoperability between ordinary next-hop and source-specific dynamic routing protocols. Our implementation has seen a moderate amount of deployment, notably as a testbed for the IETF Homenet working group

    Fault Tolerant Scalable Support for Network Portability and Traffic Engineering

    Get PDF
    The P-SHIM6 architecture provides ISP independence to IPv6 sites without compromising scalability. This architecture is based on a middle-box, the P-SHIM6, which manages the SHIM6 protocol exchange on behalf of the nodes of a site, which are configured with provider independent addresses. Incoming and outgoing packets are processed by the P-SHIM6 box, which can assign different locators to a given communication, either when it is started, or dynamically after the communication has been established. As a consequence, changes required for provider portability are minimized, and fine-grained Traffic Engineering can be enforced at the P-SHIM6 box, in addition to the fault tolerance support provided by SHIM6.This project has been supported by the RiNG project IST-2005-035167 and by the IMPROVISA project TSI2005-07384-C03-02.Publicad

    The Impact of IPv6 on Penetration Testing

    Get PDF
    In this paper we discuss the impact the use of IPv6 has on remote penetration testing of servers and web applications. Several modifications to the penetration testing process are proposed to accommodate IPv6. Among these modifications are ways of performing fragmentation attacks, host discovery and brute-force protection. We also propose new checks for IPv6-specific vulnerabilities, such as bypassing firewalls using extension headers and reaching internal hosts through available transition mechanisms. The changes to the penetration testing process proposed in this paper can be used by security companies to make their penetration testing process applicable to IPv6 targets

    An Architecture for Network Layer Privacy

    Get PDF
    We present an architecture for the provision of network layer privacy based on the SHIM6 multihoming protocol. In its basic form, the architecture prevents on-path eavesdroppers from using SHIM6 network layer information to correlate packets that belong to the same communication but use different locators. To achieve this, several extensions to the SHIM6 protocol and to the HBA (Hash Based Addresses) addressing model are defined. On its full-featured mode of operation, hosts can vary dynamically the addresses of the packets of on-going communications. Single-homed hosts can adopt the SHIM6 protocol with the privacy enhancements to benefit from this protection against information collectors.IEEE Communications SocietyPublicad
    • 

    corecore