1,179 research outputs found

    Phototaxic foraging of the archaepaddler, a hypothetical deep-sea species

    Get PDF
    An autonomous agent (animat, hypothetical animal), called the (archae) paddler, is simulated in sufficient detail to regard its simulated aquatic locomotion (paddling) as physically possible. The paddler is supposed to be a model of an animal that might exist, although it is perfectly possible to view it as a model of a robot that might be built. The agent is assumed to navigate in a simulated deep-sea environment, where it hunts autoluminescent prey. It uses a biologically inspired phototaxic foraging-strategy, while paddling in a layer just above the bottom. The advantage of this living space is that the navigation problem is essentially two-dimensional. Moreover, the deep-sea environment is physically simple (and hence easier to simulate): no significant currents, constant temperature, completely dark. A foraging performance metric is developed that circumvents the necessity to solve the travelling salesman problem. A parametric simulation study then quantifies the influence of habitat factors, such as the density of prey, and the body-geometry (e.g. placement, direction and directional selectivity of the eyes) on foraging success. Adequate performance proves to require a specific body-% geometry adapted to the habitat characteristics. In general performance degrades smoothly for modest changes of the geometric and habitat parameters, indicating that we work in a stable region of 'design space'. The parameters have to strike a compromise between on the one hand the ability to 'fixate' an attractive target, and on the other hand to 'see' as many targets at the same time as possible. One important conclusion is that simple reflex-based navigation can be surprisingly efficient. In the second place, performance in a global task (foraging) depends strongly on local parameters like visual direction-tuning, position of the eyes and paddles, etc. Behaviour and habitat 'mould' the body, and the body-geometry strongly influences performance. The resulting platform enables further testing of foraging strategies, or vision and locomotion theories stemming either from biology or from robotics

    Bio-inspired collision detector with enhanced selectivity for ground robotic vision system

    Get PDF
    There are many ways of building collision-detecting systems. In this paper, we propose a novel collision selective visual neural network inspired by LGMD2 neurons in the juvenile locusts. Such collision-sensitive neuron matures early in the ļ¬rst-aged or even hatching locusts, and is only selective to detect looming dark objects against bright background in depth, represents swooping predators, a situation which is similar to ground robots or vehicles. However, little has been done on modeling LGMD2, let alone its potential applications in robotics and other vision-based areas. Compared to other collision detectors, our major contributions are ļ¬rst, enhancing the collision selectivity in a bio-inspired way, via constructing a computing efļ¬cient visual sensor, and realizing the revealed speciļ¬c characteristic sofLGMD2. Second, we applied the neural network to help rearrange path navigation of an autonomous ground miniature robot in an arena. We also examined its neural properties through systematic experiments challenged against image streams from a visual sensor of the micro-robot

    Natural smartness in hypothetical animals. Of paddlers and glowballs

    Get PDF
    To obtain a reasonably self-contained and complete simulation of navigational sensori-motor behaviour, a neuroethological model of a hypothetical animal, the paddler, has been developed

    Nonparametric directionality measures for time series and point process data

    Get PDF
    The need to determine the directionality of interactions between neural signals is a key requirement for analysis of multichannel recordings. Approaches most commonly used are parametric, typically relying on autoregressive models. A number of concerns have been expressed regarding parametric approaches, thus there is a need to consider alternatives. We present an alternative nonparametric approach for construction of directionality measures for bivariate random processes. The method combines time and frequency domain representations of bivariate data to decompose the correlation by direction. Our framework generates two sets of complementary measures, a set of scalar measures, which decompose the total product moment correlation coefficient summatively into three terms by direction and a set of functions which decompose the coherence summatively at each frequency into three terms by direction: forward direction, reverse direction and instantaneous interaction. It can be undertaken as an addition to a standard bivariate spectral and coherence analysis, and applied to either time series or point-process (spike train) data or mixtures of the two (hybrid data). In this paper, we demonstrate application to spike train data using simulated cortical neurone networks and application to experimental data from isolated muscle spindle sensory endings subject to random efferent stimulation

    Computational models in the age of large datasets.

    Get PDF
    Technological advances in experimental neuroscience are generating vast quantities of data, from the dynamics of single molecules to the structure and activity patterns of large networks of neurons. How do we make sense of these voluminous, complex, disparate and often incomplete data? How do we find general principles in the morass of detail? Computational models are invaluable and necessary in this task and yield insights that cannot otherwise be obtained. However, building and interpreting good computational models is a substantial challenge, especially so in the era of large datasets. Fitting detailed models to experimental data is difficult and often requires onerous assumptions, while more loosely constrained conceptual models that explore broad hypotheses and principles can yield more useful insights.Charles A King TrustThis is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.conb.2015.01.00
    • ā€¦
    corecore