7,642 research outputs found

    Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors

    Get PDF
    We present an approach to experimentally evaluate gravity gradient noise, a potentially limiting noise source in advanced interferometric gravitational wave (GW) detectors. In addition, the method can be used to provide sub-percent calibration in phase and amplitude of modern interferometric GW detectors. Knowledge of calibration to such certainties shall enhance the scientific output of the instruments in case of an eventual detection of GWs. The method relies on a rotating symmetrical two-body mass, a Dynamic gravity Field Generator (DFG). The placement of the DFG in the proximity of one of the interferometer's suspended test masses generates a change in the local gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure

    Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions

    Full text link
    Earth-sized planets around nearby stars are being detected for the first time by ground-based radial velocity and space-based transit surveys. This milestone is opening the path towards the definition of missions able to directly detect the light from these planets, with the identification of bio-signatures as one of the main objectives. In that respect, both ESA and NASA have identified nulling interferometry as one of the most promising techniques. The ability to study distant planets will however depend on exozodiacal dust clouds surrounding the target stars. In this paper, we assess the impact of exozodiacal dust clouds on the performance of an infrared nulling interferometer in the Emma X-array configuration. For the nominal mission architecture with 2-m aperture telescopes, we found that point-symmetric exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can be tolerated in order to survey at least 150 targets during the mission lifetime. Considering modeled resonant structures created by an Earth-like planet orbiting at 1 AU around a Sun-like star, we show that the tolerable dust density for planet detection goes down to about 15 times the solar zodiacal density for face-on systems and decreases with the disc inclination. The upper limits on the tolerable exozodiacal dust density derived in this study must be considered as rather pessimistic, but still give a realistic estimation of the typical sensitivity that we will need to reach on exozodiacal discs in order to prepare the scientific programme of future Earth-like planet characterisation missions.Comment: 17 pages, accepted for publication in A&

    Stellar Intensity Interferometry: Prospects for sub-milliarcsecond optical imaging

    Full text link
    Using kilometric arrays of air Cherenkov telescopes, intensity interferometry may increase the spatial resolution in optical astronomy by an order of magnitude, enabling images of rapidly rotating stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large airmasses, also at short optical wavelengths. The required large telescopes with very fast detectors are becoming available as arrays of air Cherenkov telescopes, distributed over a few square km. Digital signal handling enables very many baselines to be synthesized, while stars are tracked with electronic time delays, thus synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around m(v)=8, reaching resolutions ~30 microarcsec in the violet. The signal-to-noise ratio favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Intensity interferometry provides the modulus (but not phase) of any spatial frequency component of the source image; for this reason image reconstruction requires phase retrieval techniques, feasible if sufficient coverage of the interferometric (u,v)-plane is available. Experiments are in progress; test telescopes have been erected, and trials in connecting large Cherenkov telescopes have been carried out. This paper reviews this interferometric method in view of the new possibilities offered by arrays of air Cherenkov telescopes, and outlines observational programs that should become realistic already in the rather near future.Comment: New Astronomy Reviews, in press; 101 pages, 11 figures, 185 reference

    Imaging and Nulling with the Space Interferometry Mission

    Get PDF
    We present numerical simulations for a possible synthesis imaging mode of the Space Interferometer Mission (SIM). We summarize the general techniques that SIM offers to perform imaging of high surface brightness sources, and discuss their strengths and weaknesses. We describe an interactive software package that is used to provide realistic, photometrically correct estimates of SIM performance for various classes of astronomical objects. In particular, we simulate the cases of gaseous disks around black holes in the nuclei of galaxies, and zodiacal dust disks around young stellar objects. Regarding the first, we show that a Keplerian velocity gradient of the line-emitting gaseous disk -- and thus the mass of the putative black hole -- can be determined with SIM to unprecedented accuracy in about 5 hours of integration time for objects with H_alpha surface brigthness comparable to the prototype M 87. Detections and observations of exo-zodiacal dust disks depend critically on the disk properties and the nulling capabilities of SIM. Systems with similar disk size and at least one tenth of the dust content of beta Pic can be detected by SIM at distances between 100 pc and a few kpc, if a nulling efficiency of 1/10000 is achieved. Possible inner clear regions indicative of the presence of massive planets can also be detected and imaged. On the other hand, exo-zodiacal disks with properties more similar to the solar system will not be found in reasonable integration times with SIM.Comment: 28 pages, incl. 8 postscript figures, excl. 10 gif-figures Submitted to Ap

    New opportunities with spectro-interferometry and spectro-astrometry

    Full text link
    Latest-generation spectro-interferometric instruments combine a milliarcsecond angular resolution with spectral capabilities, resulting in an immensely increased information content. Here, I present methodological work and results that illustrate the fundamentally new scientific insights provided by spectro-interferometry with very high spectral dispersion or in multiple line transitions (Brackett and Pfund lines). In addition, I discuss some pitfalls in the interpretation of spectro-interferometric data. In the context of our recent studies on the classical Be stars {\beta} CMi and {\zeta} Tau, I present the first position-velocity diagram obtained with optical interferometry and provide a physical interpretation for a phase inversion, which has in the meantime been observed for several classical Be-stars. In the course of our study on the Herbig B[e] star V921 Sco, we combined, for the first time, spectro-interferometry and spectro-astrometry, providing a powerful and resource-efficient way to constrain the spatial distribution as well as the kinematics of the circumstellar gas with an unprecedented velocity resolution up to R = {\lambda}/{\Delta}{\lambda} = 100,000. Finally, I discuss our phase sign calibration procedure, which has allowed us to calibrate AMBER differential phases and closure phases for all spectral modes, and derive from the gained experience science-driven requirements for future instrumentation projects.Comment: 15 pages, 7 figures, published in SPIE proceedings (http://dx.doi.org/10.1117/12.926801

    Towards optical intensity interferometry for high angular resolution stellar astrophysics

    Full text link
    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via Monte-Carlo simulations. Simple stellar objects as well as stellar surfaces with localized hot or cool regions can be accurately imaged. Finally, experimental efforts to measure intensity correlations are expounded. The functionality of analog and digital correlators is demonstrated. Intensity correlations have been measured for a simulated star emitting pseudo-thermal light, resulting in angular diameter measurements. The StarBase observatory, consisting of a pair of 3 m telescopes separated by 23 m, is described.Comment: PhD dissertatio
    • …
    corecore