222 research outputs found

    A "metric" semi-Lagrangian Vlasov-Poisson solver

    Full text link
    We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs elements of metric to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position Q(P)Q(P) of any test particle PP, by expanding at second order the geometry of the motion in the vicinity of the closest element. It is thus possible to reconstruct accurately the phase-space distribution function at any time tt and position PP by proper interpolation of initial conditions, following Liouville theorem. When distorsion of the elements of metric becomes too large, it is necessary to create new initial conditions along with isotropic elements and repeat the procedure again until next resampling. To speed up the process, interpolation of the phase-space distribution is performed at second order during the transport phase, while third order splines are used at the moments of remapping. We also show how to compute accurately the region of influence of each element of metric with the proper percolation scheme. The algorithm is tested here in the framework of one-dimensional gravitational dynamics but is implemented in such a way that it can be extended easily to four or six-dimensional phase-space. It can also be trivially generalised to plasmas.Comment: 32 pages, 14 figures, accepted for publication in Journal of Plasma Physics, Special issue: The Vlasov equation, from space to laboratory plasma

    WENO schemes applied to the quasi-relativistic Vlasov--Maxwell model for laser-plasma interaction

    Get PDF
    In this paper we focus on WENO-based methods for the simulation of the 1D Quasi-Relativistic Vlasov--Maxwell (QRVM) model used to describe how a laser wave interacts with and heats a plasma by penetrating into it. We propose several non-oscillatory methods based on either Runge--Kutta (explicit) or Time-Splitting (implicit) time discretizations. We then show preliminary numerical experiments

    A semi-Lagrangian Vlasov solver in tensor train format

    Full text link
    In this article, we derive a semi-Lagrangian scheme for the solution of the Vlasov equation represented as a low-parametric tensor. Grid-based methods for the Vlasov equation have been shown to give accurate results but their use has mostly been limited to simulations in two dimensional phase space due to extensive memory requirements in higher dimensions. Compression of the solution via high-order singular value decomposition can help in reducing the storage requirements and the tensor train (TT) format provides efficient basic linear algebra routines for low-rank representations of tensors. In this paper, we develop interpolation formulas for a semi-Lagrangian solver in TT format. In order to efficiently implement the method, we propose a compression of the matrix representing the interpolation step and an efficient implementation of the Hadamard product. We show numerical simulations for standard test cases in two, four and six dimensional phase space. Depending on the test case, the memory requirements reduce by a factor 10210310^2-10^3 in four and a factor 10510610^5-10^6 in six dimensions compared to the full-grid method

    A cloudy Vlasov solution

    Full text link
    We propose to integrate the Vlasov-Poisson equations giving the evolution of a dynamical system in phase-space using a continuous set of local basis functions. In practice, the method decomposes the density in phase-space into small smooth units having compact support. We call these small units ``clouds'' and choose them to be Gaussians of elliptical support. Fortunately, the evolution of these clouds in the local potential has an analytical solution, that can be used to evolve the whole system during a significant fraction of dynamical time. In the process, the clouds, initially round, change shape and get elongated. At some point, the system needs to be remapped on round clouds once again. This remapping can be performed optimally using a small number of Lucy iterations. The remapped solution can be evolved again with the cloud method, and the process can be iterated a large number of times without showing significant diffusion. Our numerical experiments show that it is possible to follow the 2 dimensional phase space distribution during a large number of dynamical times with excellent accuracy. The main limitation to this accuracy is the finite size of the clouds, which results in coarse graining the structures smaller than the clouds and induces small aliasing effects at these scales. However, it is shown in this paper that this method is consistent with an adaptive refinement algorithm which allows one to track the evolution of the finer structure in phase space. It is also shown that the generalization of the cloud method to the 4 dimensional and the 6 dimensional phase space is quite natural.Comment: 46 pages, 25 figures, submitted to MNRA
    corecore