60,593 research outputs found

    Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators

    Full text link
    This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for minimizing this function. The effectiveness of the controller is demonstrated through simulation of a wind turbine operating under several scenarios.Comment: 14 pages, 9 figures, accepted for publication in IEEE Transactions on Control Systems Technolog

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with specifi c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of specifi cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and specifi c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Modeling and Control for Smart Grid Integration of Solar/Wind Energy Conversion System

    Get PDF
    Performance optimization, system reliability and operational efficiency are key characteristics of smart grid systems. In this paper a novel model of smart grid-connected PV/WT hybrid system is developed. It comprises photovoltaic array, wind turbine, asynchronous (induction) generator, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The dynamic behavior of the proposed model is examined under different operating conditions. Solar irradiance, temperature and wind speed data is gathered from a grid connected, 28.8kW solar power system located in central Manchester. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for smart grid performance optimization

    Modeling the effects of seasonal weather and site conditions on wind turbine failure modes

    Get PDF
    It is important that the impact of the offshore environment on wind turbine reliability is reduced significantly due to the importance of offshore wind deployment to global energy targets. Future development may otherwise be compromised by unsustainable operation and maintenance (O&M) costs. This paper aims to improve the accuracy of offshore O&M models by accounting for any relationship between certain weather characteristics and wind turbine failure modes. This is done using maintenance data from a UK onshore wind farm and weather data from a weather station located nearby. Non-parametric Mixture Models are estimated from the data and they are used to calculate a more accurate, weather dependent, failure rate which will be used in future research for Markov Chain Monte Carlo Simulation. This research will be of particular interest to wind turbine operators and manufacturer

    A genetic algorithm based economic dispatch (GAED) with environmental constraint optimisation

    Get PDF
    The role of renewable energy in power systems is becoming more significant due to the increasing cost of fossil fuels and climate change concerns. However, the inclusion of Renewable Energy Generators (REG), such as wind power, has created additional problems for power system operators due to the variability and lower predictability of output of most REGs, with the Economic Dispatch (ED) problem being particularly difficult to resolve. In previous papers we had reported on the inclusion of wind power in the ED calculations. The simulation had been performed using a system model with wind power as an intermittent source, and the results of the simulation have been compared to that of the Direct Search Method (DSM) for similar cases. In this paper we report on our continuing investigations into using Genetic Algorithms (GA) for ED for an independent power system with a significant amount of wind energy in its generator portfolio. The results demonstrate, in line with previous reports in the literature, the effectiveness of GA when measured against a benchmark technique such as DSM
    corecore