13,546 research outputs found

    On learning and the stability of cycles

    Get PDF
    We study a general equilibrium model where the multiplicity of stationary periodic perfect foresight equilibria is pervasive. We investigate the extent of which agents can learn to coordinate on stationary perfect foresight cycles. The example economy, taken from Grandmont (1985), is an endowment overlapping generations model with fiat money, where consumption in the first and second periods of life are not necessarily gross substitutes. Depending on the value of a preference parameter, the limiting backward (direction of time reversed) perfect foresight dynamics are characterized by steady state, periodic, or chaotic trajectories for real money balances. We relax the perfect foresight assumption and examine how a population of artificial, heterogeneous adaptive agents might learn in such an environment. These artificial agents optimize given their forecasts of future prices, and they use forecast rules that are consistent with steady state or periodic trajectories for prices. The agents' forecast rules are updated by a genetic algorithm. We find that the population of artificial adaptive agents is able to eventually coordinate on steady state and low-order cycles, but not on the higher-order periodic equilibria that exist under the perfect foresight assumption.Business cycles

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Approaches to working in high-dimensional data spaces: gene expression microarrays

    Get PDF
    This review provides a focused summary of the implications of high-dimensional data spaces produced by gene expression microarrays for building better models of cancer diagnosis, prognosis, and therapeutics. We identify the unique challenges posed by high dimensionality to highlight methodological problems and discuss recent methods in predictive classification, unsupervised subclass discovery, and marker identification

    New directions for Artificial Intelligence (AI) methods in optimum design

    Get PDF
    Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems

    Short-term plasticity as cause-effect hypothesis testing in distal reward learning

    Get PDF
    Asynchrony, overlaps and delays in sensory-motor signals introduce ambiguity as to which stimuli, actions, and rewards are causally related. Only the repetition of reward episodes helps distinguish true cause-effect relationships from coincidental occurrences. In the model proposed here, a novel plasticity rule employs short and long-term changes to evaluate hypotheses on cause-effect relationships. Transient weights represent hypotheses that are consolidated in long-term memory only when they consistently predict or cause future rewards. The main objective of the model is to preserve existing network topologies when learning with ambiguous information flows. Learning is also improved by biasing the exploration of the stimulus-response space towards actions that in the past occurred before rewards. The model indicates under which conditions beliefs can be consolidated in long-term memory, it suggests a solution to the plasticity-stability dilemma, and proposes an interpretation of the role of short-term plasticity.Comment: Biological Cybernetics, September 201

    Optimal Clustering Framework for Hyperspectral Band Selection

    Full text link
    Band selection, by choosing a set of representative bands in hyperspectral image (HSI), is an effective method to reduce the redundant information without compromising the original contents. Recently, various unsupervised band selection methods have been proposed, but most of them are based on approximation algorithms which can only obtain suboptimal solutions toward a specific objective function. This paper focuses on clustering-based band selection, and proposes a new framework to solve the above dilemma, claiming the following contributions: 1) An optimal clustering framework (OCF), which can obtain the optimal clustering result for a particular form of objective function under a reasonable constraint. 2) A rank on clusters strategy (RCS), which provides an effective criterion to select bands on existing clustering structure. 3) An automatic method to determine the number of the required bands, which can better evaluate the distinctive information produced by certain number of bands. In experiments, the proposed algorithm is compared to some state-of-the-art competitors. According to the experimental results, the proposed algorithm is robust and significantly outperform the other methods on various data sets
    • …
    corecore