297 research outputs found

    A digital polar transmitter for multi-band OFDM Ultra-WideBand

    No full text
    Linear power amplifiers used to implement the Ultra-Wideband standard must be backed off from optimum power efficiency to meet the standard specifications and the power efficiency suffers. The problem of low efficiency can be mitigated by polar modulation. Digital polar architectures have been employed on numerous wireless standards like GSM, EDGE, and WLAN, where the fractional bandwidths achieved are only about 1%, and the power levels achieved are often in the vicinity of 20 dBm. Can the architecture be employed on wireless standards with low-power and high fractional bandwidth requirements and yet achieve good power efficiency? To answer these question, this thesis studies the application of a digital polar transmitter architecture with parallel amplifier stages for UWB. The concept of the digital transmitter is motivated and inspired by three factors. First, unrelenting advances in the CMOS technology in deep-submicron process and the prevalence of low-cost Digital Signal processing have resulted in the realization of higher level of integration using digitally intensive approaches. Furthermore, the architecture is an evolution of polar modulation, which is known for high power efficiency in other wireless applications. Finally, the architecture is operated as a digital-to-analog converter which circumvents the use of converters in conventional transmitters. Modeling and simulation of the system architecture is performed on the Agilent Advanced Design System Ptolemy simulation platform. First, by studying the envelope signal, we found that envelope clipping results in a reduction in the peak-to-average power ratio which in turn improves the error vector magnitude performance (figure of merit for the study). In addition, we have demonstrated that a resolution of three bits suffices for the digital polar transmitter when envelope clipping is performed. Next, this thesis covers a theoretical derivation for the estimate of the error vector magnitude based on the resolution, quantization and phase noise errors. An analysis on the process variations - which result in gain and delay mismatches - for a digital transmitter architecture with four bits ensues. The above studies allow RF designers to estimate the number of bits required and the amount of distortion that can be tolerated in the system. Next, a study on the circuit implementation was conducted. A DPA that comprises 7 parallel RF amplifiers driven by a constant RF phase-modulated signal and 7 cascode transistors (individually connected in series with the bottom amplifiers) digitally controlled by a 3-bit digitized envelope signal to reconstruct the UWB signal at the output. Through the use of NFET models from the IBM 130-nm technology, our simulation reveals that our DPA is able to achieve an EVM of - 22 dB. The DPA simulations have been performed at 3.432 GHz centre frequency with a channel bandwidth of 528 MHz, which translates to a fractional bandwidth of 15.4%. Drain efficiencies of 13.2/19.5/21.0% have been obtained while delivering -1.9/2.5/5.5 dBm of output power and consuming 5/9/17 mW of power. In addition, we performed a yield analysis on the digital polar amplifier, based on unit-weighted and binary-weighted architecture, when gain variations are introduced in all the individual stages. The dynamic element matching method is also introduced for the unit-weighted digital polar transmitter. Monte Carlo simulations reveal that when the gain of the amplifiers are allowed to vary at a mean of 1 with a standard deviation of 0.2, the binary-weighted architecture obtained a yield of 79%, while the yields of the unit-weighted architectures are in the neighbourhood of 95%. Moreover, the dynamic element matching technique demonstrates an improvement in the yield by approximately 3%. Finally, a hardware implementation for this architecture based on software-defined arbitrary waveform generators is studied. In this section, we demonstrate that the error vector magnitude results obtained with a four-stage binary-weighted digital polar transmitter under ideal combining conditions fulfill the European Computer Manufacturers Association requirements. The proposed experimental setup, believed to be the first ever attempted, confirm the feasibility of a digital polar transmitter architecture for Ultra-Wideband. In addition, we propose a number of power combining techniques suitable for the hardware implementation. Spatial power combining, in particular, shows a high potential for the digital polar transmitter architecture. The above studies demonstrate the feasibility of the digital polar architecture with good power efficiency for a wideband wireless standard with low-power and high fractional bandwidth requirements

    Energy Efficient RF Transmitter Design using Enhanced Breakdown Voltage SOI-CMOS Compatible MESFETs

    Get PDF
    abstract: The high cut-off frequency of deep sub-micron CMOS technologies has enabled the integration of radio frequency (RF) transceivers with digital circuits. However, the challenging point is the integration of RF power amplifiers, mainly due to the low breakdown voltage of CMOS transistors. Silicon-on-insulator (SOI) metal semiconductor field effect transistors (MESFETs) have been introduced to remedy the limited headroom concern in CMOS technologies. The MESFETs presented in this thesis have been fabricated on different SOI-CMOS processes without making any change to the standard fabrication steps and offer 2-30 times higher breakdown voltage than the MOSFETs on the same process. This thesis explains the design steps of high efficiency and wideband RF transmitters using the proposed SOI-CMOS compatible MESFETs. This task involves DC and RF characterization of MESFET devices, along with providing a compact Spice model for simulation purposes. This thesis presents the design of several SOI-MESFET RF power amplifiers operating at 433, 900 and 1800 MHz with ~40% bandwidth. Measurement results show a peak power added efficiency (PAE) of 55% and a peak output power of 22.5 dBm. The RF-PAs were designed to operate in Class-AB mode to minimize the linearity degradation. Class-AB power amplifiers lead to poor power added efficiency, especially when fed with signals with high peak to average power ratio (PAPR) such as wideband code division multiple access (W-CDMA). Polar transmitters have been introduced to improve the efficiency of RF-PAs at backed-off powers. A MESFET based envelope tracking (ET) polar transmitter was designed and measured. A low drop-out voltage regulator (LDO) was used as the supply modulator of this polar transmitter. MESFETs are depletion mode devices; therefore, they can be configured in a source follower configuration to have better stability and higher bandwidth that MOSFET based LDOs. Measurement results show 350 MHz bandwidth while driving a 10 pF capacitive load. A novel polar transmitter is introduced in this thesis to alleviate some of the limitations associated with polar transmitters. The proposed architecture uses the backgate terminal of a partially depleted transistor on SOI process, which relaxes the bandwidth and efficiency requirements of the envelope amplifier in a polar transmitter. The measurement results of the proposed transmitter demonstrate more than three times PAE improvement at 6-dB backed-off output power, compared to the traditional RF transmitters.Dissertation/ThesisPh.D. Electrical Engineering 201

    A 40-GHz Load Modulated Balanced Power Amplifier using Unequal Power Splitter and Phase Compensation Network in 45-nm SOI CMOS

    Get PDF
    © 2023 IEEE - All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TCSI.2023.3282731 ​​​​​​​In this work, a ten-way power-combined poweramplifier is designed using a load modulated balanced amplifier(LMBA)-based architecture. To provide the required magnitudeand phase controls between the main and control-signal paths ofthe LMBA, an unequal power splitter and a phase compensationnetwork are proposed. As proof of concept, the designed poweramplifier is implemented in a 45-nm SOI CMOS process. At 40GHz, it delivers a 25.1 dBm Psat with a peak power-addedefficiency (PAE) of 27.9%. At 6-dB power back-off level, itachieves 1.39 times drain efficiency enhancement over an idealClass-B power amplifier. Using a 200-MHz single-carrier 64-QAMsignal, the designed amplifier delivers an average output power of16.5 dBm with a PAE of 13.1% at an EVMrms of -23.9 dB andACPR of -25.3 dBc. The die size, including all testing pads, is only1.92 mm2. To the best of the authors’ knowledge, compared withthe other recently published silicon-based LMBAs, this designachieves the highest Psat.Peer reviewe

    Digital Radio Encoding and Power Amplifier Design for Multimode and Multiband Wireless Communications

    Get PDF
    The evolution of wireless technology has necessitated the support of multiple communication standards by mobile devices. At present, multiple chipsets/radios operating at predefined sets of modulation schemes, frequency bands, bandwidths and output power levels are used to achieve this objective. This leads to higher component counts, increased cost and limits the capacity to cope with future communication standards. In order to tackle different wireless standards using a single chipset, digital circuits have been increasingly deployed in radios and demonstrated re-configurability in different modulation schemes (multimode) and frequency bands (multiband). Despite efforts and progress made in digitizing the entire radio, the power amplifier (PA) is still designed using an conventional approach and has become the bottleneck in digital transmitters, in terms of low average power efficiency, poor compatibility with modern CMOS technology and limited re-configurability. This research addresses these issues from two aspects. The first half of the thesis investigates signal encoding issues between the modulator and PA. We propose, analyze and evaluate a new hybrid amplitude/time signal encoding scheme that significantly improves the coding efficiency and dynamic range of a digitally modulated power amplifier (DMPA) without significantly increasing design complexity. The proposed hybrid amplitude/time encoding scheme combines both the amplitude domain and the time domain to optimally encode information. Experimental results show that hybrid amplitude/time encoding results in a 35% increase in the average coding efficiency with respect to conventional time encoding, and is only 6.7% lower than peak efficiency when applied to a Wireless Local Area Network (WLAN) signal with a peak to average power ratio equal to 9.9 dB. A new DMPA architecture, based on the proposed hybrid encoding, is also proposed. The second half of this thesis presents the design, analysis and implementation of a CMOS PA that is amenable to the proposed hybrid encoding scheme. A multi-way current mode class-D PA architecture has been proposed and realized in 130 nm CMOS technology. The designed PA has satisfied the objectives of wide bandwidth (1.5 GHz - 2.7 GHz at 1 dB output power), and high efficiency (PAE 63%) in addition to demonstrating linear responses using the proposed digital encoding. A complete digital transmitter combining the encoder and the multi-way PA was also investigated. The overall efficiency is 27% modulating 7.3 dB peak to average power ratio QAM signals

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Integrated measurement techniques for RF-power amplifiers

    Get PDF

    RF Power Amplifier and Its Envelope Tracking

    Get PDF
    This dissertation introduces an agile supply modulator with optimal transient performance for the envelope tracking supply in linear power amplifiers. For this purpose, an on-demand current source module, the bang-bang transient performance enhancer (BBTPE), is proposed. Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further assists the proposed system to reduce both overshoot and settling time. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results for a PA using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in ACPR and EVM, respectively. In a polar power amplifier, the input signal splits into phase and amplitude components using a non-linear conversion operation. This operation broadens the spectrum of the polar signal components. The information of amplitude and phase contains spectral images due to the sampling operation in non-linear conversion operation. These spectral images can be large and cause out-of-band emission in the output spectrum. In addition, during the recombination process of phase and amplitude, a delay mismatch between amplitude and phase signals, which can occur due to separate processing paths of amplitude and phase signals, causes out-of-band emissions, also known as spectral regrowth. This dissertation presents solutions to both of the issues of digital polar power amplifier: spectral images and delay mismatch. In order to reduce the problem of spectral images, interpolation of phase and amplitude is proposed in this work. This increases the effective sampling frequency of the amplitude and phase, which helps to improve the linearity by around 10 dB. In addition, a novel calibration scheme is proposed here for the delay mismatch between phase and amplitude path in a digital polar power amplifier. The scheme significantly reduces the spectral regrowth. The scheme uses the same path for phase and amplitude delay calculation after the recombination that allows having a robust calibration. Furthermore, it can be executed during the empty transmission slots. The proposed scheme is designed in a 40 nm CMOS technology and simulated with a 64-QAM IEEE 802.11n wireless standard. The scheme achieved 7.57 dB enhancement in ACLR and 84.35% improvement in EVM for a 3.5 ns mismatch in phase and amplitude path
    corecore