41,377 research outputs found

    An assessment of blockchain consensus protocols for the Internet of Things

    Get PDF
    In a few short years the Internet of Things has become an intrinsic part of everyday life, with connected devices included in products created for homes, cars and even medical equipment. But its rapid growth has created several security problems, with respect to the transmission and storage of vast amounts of customers data, across an insecure heterogeneous collection of networks. The Internet of Things is therefore creating a unique set of risk and problems that will affect most households. From breaches in confidentiality, which could allow users to be snooped on, through to failures in integrity, which could lead to consumer data being compromised; devices are presenting many security challenges to which consumers are ill equipped to protect themselves from. Moreover, when this is coupled with the heterogeneous nature of the industry, and the interoperable and scalability problems it becomes apparent that the Internet of Things has created an increased attack surface from which security vulnerabilities may be easily exploited. However, it has been conjectured that blockchain may provide a solution to the Internet of Things security and scalability problems. Because of blockchain’s immutability, integrity and scalability, it is possible that its architecture could be used for the storage and transfer of Internet of Things data. Within this paper a cross section of blockchain consensus protocols have been assessed against a requirement framework, to establish each consensus protocols strengths and weaknesses with respect to their potential implementation in an Internet of Things blockchain environment

    Design Criteria to Architect Continuous Experimentation for Self-Driving Vehicles

    Full text link
    The software powering today's vehicles surpasses mechatronics as the dominating engineering challenge due to its fast evolving and innovative nature. In addition, the software and system architecture for upcoming vehicles with automated driving functionality is already processing ~750MB/s - corresponding to over 180 simultaneous 4K-video streams from popular video-on-demand services. Hence, self-driving cars will run so much software to resemble "small data centers on wheels" rather than just transportation vehicles. Continuous Integration, Deployment, and Experimentation have been successfully adopted for software-only products as enabling methodology for feedback-based software development. For example, a popular search engine conducts ~250 experiments each day to improve the software based on its users' behavior. This work investigates design criteria for the software architecture and the corresponding software development and deployment process for complex cyber-physical systems, with the goal of enabling Continuous Experimentation as a way to achieve continuous software evolution. Our research involved reviewing related literature on the topic to extract relevant design requirements. The study is concluded by describing the software development and deployment process and software architecture adopted by our self-driving vehicle laboratory, both based on the extracted criteria.Comment: Copyright 2017 IEEE. Paper submitted and accepted at the 2017 IEEE International Conference on Software Architecture. 8 pages, 2 figures. Published in IEEE Xplore Digital Library, URL: http://ieeexplore.ieee.org/abstract/document/7930218

    Digitalization and Innovation

    Get PDF
    Developments in digital technology offer new opportunities to design new products and services. However, creating such digitalized products and services often creates new problems and challenges to firms that are trying to innovate. In this essay, we analyze the impact of digitalization of products and services on innovations. In particular, we argue that digitalization of products will lead to an emergence of new layered product architecture. The layered architecture is characterized by its generative design rules that connect loosely coupled heterogeneous layers. It is pregnant with the potential of unbounded innovations. The new product architecture will require organizations to adopt a new organizing logic of innovation that we dubbed as doubly distributed innovation network. Based on this analysis, we propose five key issues that future researchers need to explore.innovation, innovation, product architecture, design rules

    Technology Choice in the IT Industry and Changes of the Trade Structure

    Get PDF
    In the IT industry, there has been a remarkable increase in the demand for system LSI. A system LSI must be produced, tailor-designed for each electrical appliance. It is said that this production method has made the IC cycle ambiguous in recent years. It can be sought that the choice of whether the economy pursues a development path centering on technology which is tradable or technology which is embodied in labor, depends on the historical background. The relationship between these two types of technologies is changing rapidly every one or two years. In this background, the analysis is focused on the new trend of technology. In the section 2, the newest trend of technology in the field of system LSI is explained. Then, which kind of technology will be developed and how it will have an affect in the near future, is considered.Technology Choice, IT industry, Trade Structure, System LSI, Information technology, Information services industry

    Architectural Information Modelling in Construction History

    Get PDF
    The past few years show a significant increase in the usage of three-dimensional modelling and semantic description techniques for architectural research purposes. Where this increase has already shaped today’s design and construction industry, research in architectural and construction history can still improve its work methods and results through these techniques. Therefore, we propose a new conceptual approach for Architectural Information Modelling (AIM), which aims at describing historical information in construction and architecture directly related to design information and design practice. This paper will give an introduction into existing 3D modelling techniques and semantic description techniques, continuing with how these techniques are applied in the AIM approach. This investigation of 3D modelling and semantic technology shows promising results. However, in order to integrate these techniques into an AIM framework, more work is needed. Future work in this research project will therefore explore in further detail the semantic description scheme proposed below and the implementation of a proof-of-concept

    Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models

    Full text link
    In remote sensing images, the absolute orientation of objects is arbitrary. Depending on an object's orientation and on a sensor's flight path, objects of the same semantic class can be observed in different orientations in the same image. Equivariance to rotation, in this context understood as responding with a rotated semantic label map when subject to a rotation of the input image, is therefore a very desirable feature, in particular for high capacity models, such as Convolutional Neural Networks (CNNs). If rotation equivariance is encoded in the network, the model is confronted with a simpler task and does not need to learn specific (and redundant) weights to address rotated versions of the same object class. In this work we propose a CNN architecture called Rotation Equivariant Vector Field Network (RotEqNet) to encode rotation equivariance in the network itself. By using rotating convolutions as building blocks and passing only the the values corresponding to the maximally activating orientation throughout the network in the form of orientation encoding vector fields, RotEqNet treats rotated versions of the same object with the same filter bank and therefore achieves state-of-the-art performances even when using very small architectures trained from scratch. We test RotEqNet in two challenging sub-decimeter resolution semantic labeling problems, and show that we can perform better than a standard CNN while requiring one order of magnitude less parameters

    Kiosks in retailing: the quiet revolution

    Get PDF
    Kiosks have the potential to be a significant application of IT in retailing, information provision and service delivery. This article discusses and analyses the application of kiosks as a channel for in-store service delivery. For these kiosks a taxonomy that characterises kiosks by their function: inform, interact, transact and relate is proposed. Eight case study examples of in store kiosks are analysed in using a framework that includes environment, task, audience, and technology. Included are: kiosks used by Halifax, Daewoo, Argos, Ikea, Debenhams, GNER, Sainsbury’s. and Boots. Both the taxonomy and the framework provide a basis for further analysis of the role of kiosks in service delivery, by allowing analysis and discussion of individual kiosks to be contextualised within a wider framework. </p

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor
    corecore