10,898 research outputs found

    MEDIN Feasibility Study : archiving oil and gas industry site survey data

    Get PDF
    This report was commissioned by the Marine Environmental and Information Network (MEDIN) to investigate the feasibility of collecting oil and gas industry site surveys conducted on the UKCS (UK Continental Shelf) for archive in the MEDIN DAC (Data Archive Centre) network. The archive of three principle data types is explored; information about legacy site surveys, catalogues of information about data products associated with site surveys and actual site survey data, which may include a survey report and enclosures and/or a selection of data e.g. side-scan or multibeam, sample descriptions and seismic profiles. The merits of the collection of these data types are explored alongside the cost implications, from both an oil and gas industry contractor’s and a marine geoscientist’s perspective, thereby enabling MEDIN to better understand and make decisions as to which data to concentrate on. The principles and proposed procedures for carrying out the collection of these data types are outlined however the practical details of these will require agreement should any decision be made to proceed. At this stage a further thorough detailed scope will be required in order to formulate procedures, qualify numbers, define activities, identify resources and plan timescales. The time period for the collection of legacy site surveys will require consideration i.e. how far back it is feasible to collect this information, and whether requests should be phased to include surveys acquired within predetermined time intervals. The size of the actual site survey data holdings, the storage capacity required to archive these and the amount of work involved in processing this data into useable and useful formats will require review. Some of these issues may need to be considered on a case-by-case basis. The procedures themselves will require regular review dependent on the response i.e. the volume, types and condition of data received

    Coordinates and maps of the Apollo 17 landing site

    Get PDF
    We carried out an extensive cartographic analysis of the Apollo 17 landing site and determined and mapped positions of the astronauts, their equipment, and lunar landmarks with accuracies of better than ±1 m in most cases. To determine coordinates in a lunar body‐fixed coordinate frame, we applied least squares (2‐D) network adjustments to angular measurements made in astronaut imagery (Hasselblad frames). The measured angular networks were accurately tied to lunar landmarks provided by a 0.5 m/pixel, controlled Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) orthomosaic of the entire Taurus‐Littrow Valley. Furthermore, by applying triangulation on measurements made in Hasselblad frames providing stereo views, we were able to relate individual instruments of the Apollo Lunar Surface Experiment Package (ALSEP) to specific features captured in LROC imagery and, also, to determine coordinates of astronaut equipment or other surface features not captured in the orbital images, for example, the deployed geophones and Explosive Packages (EPs) of the Lunar Seismic Profiling Experiment (LSPE) or the Lunar Roving Vehicle (LRV) at major sampling stops. Our results were integrated into a new LROC NAC‐based Apollo 17 Traverse Map and also used to generate a series of large‐scale maps of all nine traverse stations and of the ALSEP area. In addition, we provide crater measurements, profiles of the navigated traverse paths, and improved ranges of the sources and receivers of the active seismic experiment LSPE

    Bathymetric Artifacts in Sea Beam Data: How to Recognize Them and What Causes Them

    Get PDF
    Sea Beam multibeam bathymetric data have greatly advanced understanding of the deep seafloor. However, several types of bathymetric artifacts have been identified in Sea Beam\u27s contoured output. Surveys with many overlapping swaths and digital recording on magnetic tape of Sea Beam\u27s 16 acoustic returns made it possible to evaluate actual system performance. The artifacts are not due to the contouring algorithm used. Rather, they result from errors in echo detection and processing. These errors are due to internal factors such as side lobe interference, bottom-tracking gate malfunctions, or external interference from other sound sources (e.g., 3.5 kHz echo sounders or seismic sound sources). Although many artifacts are obviously spurious and would be disregarded, some (particularly the omega effects described in this paper) are more subtle and could mislead the unwary observer. Artifacts observed could be mistaken for volcanic constructs, abyssal hill trends, hydrothermal mounds, slump blocks, or channels and could seriously affect volcanic, tectonic, or sedimentological interpretations. Misinterpretation of these artifacts may result in positioning errors when seafloor bathymetry is used to navigate the ship. Considering these possible geological misinterpretations, a clear understanding of the Sea Beam system\u27s capabilities and limitations is deemed essential

    Image processing applied to gravity and topography data covering the continental United States

    Get PDF
    The applicability of fairly standard image processing techniques to processing and analyzing large geologic data sets in addressed. Image filtering techniques were used to interpolate between gravity station locations to produce a regularly spaced data array that preserves detail in areas with good coverage, and that produces a continuous tone image rather than a contour map. Standard image processing techniques were used to digitally register and overlay topographic and gravity data, and the data were displayed in ways that emphasize subtle but pervasive structural features. The potential of the methods is illustrated through a discussion of linear structures that appear in the processed data between the midcontinent gravity high and the Appalachians

    Pattern, age, and origin of structural features within the Ozark plateau and the relationship to ore deposits

    Get PDF
    Topography and gravity anomaly images for the continental United States were constructed. Evidence was found based on gravity, remote sensing data, the presence, trend, and character of fractures, and on rock type data, for a Precambrian rift through Missouri. The feature is probably the failed arm of a triple junction that existed prior to formation of the granite-rhyolite terrain of southern Missouri
    • 

    corecore