1,721 research outputs found

    Inverter-Based Low-Voltage CCII- Design and Its Filter Application

    Get PDF
    This paper presents a negative type second-generation current conveyor (CCII-). It is based on an inverter-based low-voltage error amplifier, and a negative current mirror. The CCII- could be operated in a very low supply voltage such as ±0.5V. The proposed CCII- has wide input voltage range (±0.24V), wide output voltage (±0.24V) and wide output current range (±24mA). The proposed CCII- has no on-chip capacitors, so it can be designed with standard CMOS digital processes. Moreover, the architecture of the proposed circuit without cascoded MOSFET transistors is easily designed and suitable for low-voltage operation. The proposed CCII- has been fabricated in TSMC 0.18Όm CMOS processes and it occupies 1189.91 x 1178.43Όm2 (include PADs). It can also be validated by low voltage CCII filters

    CAPACITANCE REDUCTION USING RIPPLE SUPPRESSION CONTROL OF SINGLE PHASE ENERGY STORED QUASI-Z-SOURCE INVERTER

    Get PDF
    The energy stored Quasi-Z-source Inverter (qZSI) allows integrate energy storage in addition to the other energy source mainly for output power smoothening. Single phase inverter suffers from double-frequency power ripple in the input side and also in the energy storage that is transferred there from the ac-side. In qZSI must be used large electrolytic dc capacitors in the impedance network to suppress this 100 Hz ripple. Also to suppress this ripple can be applied two types of power decoupling: passive power decoupling and active power decoupling. In this paper is analyzed passive power decoupling that is realized by means of the modified control strategy that produces the time-varying shoot-though duty cycle to mitigate power ripple without deteriorating of the output power quality. The validity of proposed control strategy was confirmed by simulation results that were obtained in PSIM software

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Modeling and Analysis of Power Processing Systems

    Get PDF
    The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems

    Control Strategies for Open-End Winding Drives Operating in the Flux-Weakening Region

    Get PDF
    This paper presents and compares control strategies for three-phase open-end winding drives operating in the flux-weakening region. A six-leg inverter with a single dc-link is associated with the machine in order to use a single energy source. With this topology, the zero-sequence circuit has to be considered since the zero-sequence current can circulate in the windings. Therefore, conventional over-modulation strategies are not appropriate when the machine enters in the flux-weakening region. A few solutions dealing with the zero-sequence circuit have been proposed in literature. They use a modified space vector modulation or a conventional modulation with additional voltage limitations. The paper describes the aforementioned strategies and then a new strategy is proposed. This new strategy takes into account the magnitudes and phase angles of the voltage harmonic components. This yields better voltage utilization in the dq frame. Furthermore, inverter saturation is avoided in the zero-sequence frame and therefore zero-sequence current control is maintained. Three methods are implemented on a test bed composed of a three-phase permanent-magnet synchronous machine, a six-leg inverter and a hybrid DSP/FPGA controller. Experimental results are presented and compared for all strategies. A performance analysis is conducted as regards the region of operation and the machine parameters.Projet SOFRACI/FU

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de EconomĂ­a y Competitividad ENE2017-84813-RUniĂłn Europea (Programa Horizonte 2020) 76409

    A Reduced Power Switches Count Multilevel Converter-Based Photovoltaic System with Integrated Energy Storage

    Get PDF
    A multilevel topology for photovoltaic (PV) systems with integrated energy storage (ES) is presented in this article. Both PV and ES power cells are connected in series to form a dc link, which is then connected to an H-bridge to convert the dc voltage to an ac one. The main advantage of the proposed converter compared to the cascaded-H-bridge (CHB) converter, as well as compared to the available multilevel topologies, is that fewer semiconductor devices are needed here. As the output voltage levels increase, more switches are saved, which results in a more efficient, cheaper, and smaller converter. So far, there is still no modulation strategy that is designed particularly for PV-fed multilevel converters with built-in ES. The standard modulations are impractical for such an application since they suffer from deficiencies, such as polluted output signals - thus, requiring larger output filter - and overmodulation. A modified modulation strategy for PV+ES multilevel inverters is, therefore, introduced in this article. The proposal has been simulated and experimentally validated to evaluate its effectiveness, where it has been shown that the proposed topology is not exclusively feasible, but also suffers from less conduction and switching loss, achieving higher efficiency with respect to its counterpart CHB. </p
    • 

    corecore