96 research outputs found

    Advanced interface systems for readout, control, and self-calibration of MEMS resonant gyroscopes

    Get PDF
    MEMS gyroscopes have become an essential component in consumer, industrial and automotive applications, owing to their small form factor and low production cost. However, their poor stability, also known as drift, has hindered their penetration into high-end tactical and navigation applications, where highly stable bias and scale factor are required over long period of time to avoid significant positioning error. Improving the long-term stability of MEMS gyroscopes has created new challenges in both the physical sensor design and fabrication, as well as the system architecture used for interfacing with the physical sensor. The objective of this research is to develop interface circuits and systems for in-situ control and self-calibration of MEMS resonators and resonant gyroscopes to enhance the stability of bias and scale factor without the need for any mechanical rotary stage, or expensive bulky lab characterization equipment. The self-calibration techniques developed in this work provide 1-2 orders of magnitude improvement in the drift of bias and scale factor of a resonant gyroscope over temperature and time.Ph.D

    Thin-Film AlN-on-Silicon Resonant Gyroscopes: Design, Fabrication, and Eigenmode Operation

    Get PDF
    Resonant MEMS gyroscopes have been rapidly adopted in various consumer, industrial, and automotive applications thanks to the significant improvements in their performance over the past decade. The current efforts in enhancing the performance of high-precision resonant gyroscopes are mainly focused on two seemingly contradictory metrics, larger bandwidth and lower noise level, to push the technology towards navigation applications. The key enabling factor for the realization of low-noise high-bandwidth resonant gyroscopes is the utilization of a strong electromechanical transducer at high frequencies. Thin-film piezoelectric-on-silicon technology provides a very efficient transduction mechanism suitable for implementation of bulk-mode resonant gyroscopes without the need for submicron capacitive gaps or large DC polarization voltages. More importantly, in-air operation of piezoelectric devices at moderate Q values allows for the cointegration of mode-matched gyroscopes and accelerometers on a common substrate for inertial measurement units. This work presents the design, fabrication, characterization, and method of mode matching of piezoelectric-on-silicon resonant gyroscopes. The degenerate in-plane flexural vibration mode shapes of the resonating structure are demonstrated to have a strong gyroscopic coupling as well as a large piezoelectric transduction coefficient. Eigenmode operation of resonant gyroscopes is introduced as the modal alignment technique for the piezoelectric devices independently of the transduction mechanism. Controlled displacement feedback is also employed as the frequency matching technique to accomplish complete mode matching of the piezoelectric gyroscopes.Ph.D

    CMOS systems and circuits for sub-degree per hour MEMS gyroscopes

    Get PDF
    The objective of our research is to develop system architectures and CMOS circuits that interface with high-Q silicon microgyroscopes to implement navigation-grade angular rate sensors. The MEMS sensor used in this work is an in-plane bulk-micromachined mode-matched tuning fork gyroscope (M² – TFG ), fabricated on silicon-on-insulator substrate. The use of CMOS transimpedance amplifiers (TIA) as front-ends in high-Q MEMS resonant sensors is explored. A T-network TIA is proposed as the front-end for resonant capacitive detection. The T-TIA provides on-chip transimpedance gains of 25MΩ, has a measured capacitive resolution of 0.02aF /√Hz at 15kHz, a dynamic range of 104dB in a bandwidth of 10Hz and consumes 400μW of power. A second contribution is the development of an automated scheme to adaptively bias the mechanical structure, such that the sensor is operated in the mode-matched condition. Mode-matching leverages the inherently high quality factors of the microgyroscope, resulting in significant improvement in the Brownian noise floor, electronic noise, sensitivity and bias drift of the microsensor. We developed a novel architecture that utilizes the often ignored residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching (i.e.0Hz split between the drive and sense mode frequencies), as well as electronically control the sensor bandwidth. A CMOS implementation is developed that allows mode-matching of the drive and sense frequencies of a gyroscope at a fraction of the time taken by current state of-the-art techniques. Further, this mode-matching technique allows for maintaining a controlled separation between the drive and sense resonant frequencies, providing a means of increasing sensor bandwidth and dynamic range. The mode-matching CMOS IC, implemented in a 0.5μm 2P3M process, and control algorithm have been interfaced with a 60μm thick M2−TFG to implement an angular rate sensor with bias drift as low as 0.1°/hr ℃ the lowest recorded to date for a silicon MEMS gyro.Ph.D.Committee Chair: Farrokh Ayazi; Committee Member: Jennifer Michaels; Committee Member: Levent Degertekin; Committee Member: Paul Hasler; Committee Member: W. Marshall Leac

    Degree-per-hour mode-matched micromachined silicon vibratory gyroscopes

    Get PDF
    The objective of this research dissertation is to design and implement two novel micromachined silicon vibratory gyroscopes, which attempt to incorporate all the necessary attributes of sub-deg/hr noise performance requirements in a single framework: large resonant mass, high drive-mode oscillation amplitudes, large device capacitance (coupled with optimized electronics), and high-Q resonant mode-matched operation. Mode-matching leverages the high-Q (mechanical gain) of the operating modes of the gyroscope and offers significant improvements in mechanical and electronic noise floor, sensitivity, and bias stability. The first micromachined silicon vibratory gyroscope presented in this work is the resonating star gyroscope (RSG): a novel Class-II shell-type structure which utilizes degenerate flexural modes. After an iterative cycle of design optimization, an RSG prototype was implemented using a multiple-shell approach on (111) SOI substrate. Experimental data indicates sub-5 deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 30,000 at 23ºC (in vacuum). The second micromachined silicon vibratory gyroscope presented in this work is the mode-matched tuning fork gyroscope (M2-TFG): a novel Class-I tuning fork structure which utilizes in-plane non-degenerate resonant flexural modes. Operated under vacuum, the M2-TFG represents the first reported high-Q perfectly mode-matched operation in Class-I vibratory microgyroscope. Experimental results of device implemented on (100) SOI substrate demonstrates sub-deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 50,000 at 23ºC. In an effort to increase capacitive aspect ratio, a new fabrication technology was developed that involved the selective deposition of doped-polysilicon inside the capacitive sensing gaps (SPD Process). By preserving the structural composition integrity of the flexural springs, it is possible to accurately predict the operating-mode frequencies while maintaining high-Q operation. Preliminary characterization of vacuum-packaged prototypes was performed. Initial results demonstrated high-Q mode-matched operation, excellent thermal stability, and sub-deg/hr Allan variance bias instability.Ph.D.Committee Chair: Dr. Farrokh Ayazi; Committee Member: Dr. Mark G. Allen; Committee Member: Dr. Oliver Brand; Committee Member: Dr. Paul A. Kohl; Committee Member: Dr. Thomas E. Michael

    Advanced single-chip temperature stabilization system for silicon MEMS resonators and gyroscopes

    Get PDF
    The main objective of this research is to develop temperature and frequency stabilization techniques for silicon MEMS oven-controlled crystal oscillators (MEMS OCXO) with high-frequency stability. The device was built upon an ovenized platform that used a micro-heater to adjust the temperature of the resonator. Structural resistance-based (Rstruc) temperature sensing was used to improve the self-temperature monitoring accuracy of the silicon MEMS resonator. An analog feedback micro-oven control loop and a feedforward digital calibration scheme were developed for a 77MHz MEMS oscillator, which achieved a ±0.3ppm frequency stability from -25°C to 85°C. An AC heating scheme was also developed to enable tighter integration of the resonator, temperature sensor (Rstruc) and heaters. This temperature stabilization technique was also applied to silicon MEMS mode-matched vibratory x/y-axis and z-axis gyroscopes on a single chip. The temperature-induced frequency change, scale factor and output bias variations were all reduced significantly. The complete interface circuit for the single-chip three axes gyroscopes were also developed with an innovative trans-impedance amplifier to reduce the input-referred noise. For the first time, the simultaneous operation of mode-matched vibratory 3-axis MEMS gyroscopes on a single chip was demonstrated.Ph.D

    Characterization, Control and Compensation of MEMS Rate and Rate-Integrating Gyroscopes.

    Full text link
    Inertial sensing has important applications in navigation, safety, and entertainment. Areas of active research include improved device structures, control schemes, tuning methods, and detection paradigms. A powerful and flexible characterization and control system built on commercial programmable hardware is especially needed for studying mode-matched gyroscopes and rate-integrated gyroscopes. A gyroscope can be operated in a mode-matched rate-mode for increased sensitivity or rate-integrating mode for greatly increased dynamic range and bandwidth, however control is challenging and the performance is sensitive to the matching of the modes. This thesis proposes a system built on open and inexpensive software-defined radio (SDR) hardware and open source software for gyroscope characterization and control. The characterization system measures ring-down of devices with damping times and automatically tunes the vibration modes from over 40 Hz mismatch to better than 100 mHz in 3 minutes. When used for rate-gyroscope operation the system provides an FPGA implementation of rate gyroscope control with amplitude, rate and quadrature closed-loop control in the SDR hardware which demonstrates 400% improvement in noise and stability over open-loop operation. The system also operates in a RIG mode with hybrid software/firmware control and demonstrates continuous operation for several hours, unlike previous systems which are limited by the gyroscope ring-down time. The hybrid mode also has a simulation module for development of advanced gyroscope control algorithms. Advanced controls proposed for RIG operation show over 1000% improvement in effective frequency and damping mismatch in simulation and 25% reduction in drift due to damping mismatch in a test RIG. By tuning the compensation, the drift can be reduced by almost 90%, with worst case drift decreased to -41 deg/s and RMS drift to -21 deg/s. Harmonic analysis of the anisotropy in a rate-integrating gyroscope measured with this control system is presented to guide development of new error models which will further improve performance.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/96121/1/jagregor_1.pd

    High-Performance Micromachined Vibratory Rate- and Rate-Integrating Gyroscopes.

    Full text link
    We aim to reduce vibration sensitivity by developing gyros that operate in the balanced mode. The balanced mode creates zero net momentum and reduces energy loss through an anchor. The gyro can differentially cancel measurement errors from external vibration along both sensor axes. The vibration sensitivity of the balanced-mode gyroscope including structural imbalance from microfabrication reduces as the absolute difference between in-phase parasitic mode and operating mode frequencies increases. The parasitic sensing mode frequency is designed larger than the operating mode frequency to achieve both improved vibration insensitivity and shock resistivity. A single anchor is used to minimize thermoresidual stress change. We developed two gyroscope based on these design principles. The Balanced Oscillating Gyro (BOG) is a quad-mass tuning-fork rate gyroscope. The relationship between gyro design and modal characteristics is studied extensively using finite element method (FEM). The gyro is fabricated using the planar Si-on-glass (SOG) process with a device thickness of 100 micrometers. The BOG is evaluated using the first-generation analog interface circuitry. Under a frequency mismatch of 5Hz between driving and sense modes, the angle random walk (ARW) is measured to be 0.44deg/sec/sqrt(Hz). The Cylindrical Rate-Integrating Gyroscope (CING) operates in whole-angle mode. The gyro is completely axisymmetric and self-aligned to maximize mechanical isotropy. The gyro offers a large frequency ratio of ~1.7 between parasitic and the wineglass modes. The CING is fabricated using the 3D Si-on-glass (SOG) process with a device thickness of 300 micrometers. The 1st and 2nd generation CINGs operate at 18kHz and 3kHz, respectively and demonstrate a frequency mismatch of <1% and a large Q (~20,000 at 18kHz and ~100,000 at 3kHz under exact mode matching). In the rate-sensing mode, the first-generation CING (18kHz) demonstrates an Ag of 0.05, an angle random walk (ARW) of 7deg/sqrt(hr), and a bias stability of 72deg/hr without temperature compensation. In the rate-sensing mode, the second-generation CING measures an Ag of 0.0065, an ARW of 0.09deg/sqrt(hr), and a bias stability of 129deg/hr without temperature compensation. In the rate-integration mode, the second-generation CING demonstrates precession with an Ag of 0.011±0.001 under a frequency mismatch of 20~80mHz during several hours of operation.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91440/1/jycho_1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91440/2/jycho_2.pd

    Development of a wireless MEMS inertial system for health monitoring of structures

    Get PDF
    Health monitoring of structures by experimental modal analysis is typically performed with piezoelectric based transducers. These transducers are usually heavy, large in size, and require high power to operate, all of which reduce their versatility and applicability to small components and structures. The advanced developments of microfabrication and microelectromechanical systems (MEMS) have lead to progressive designs of small footprint, low dynamic mass and actuation power, and high-resolution inertial sensors. Because of their small dimensions and masses, MEMS inertial sensors could potentially replace the piezoelectric transducers for experimental modal analysis of small components and structures. To transfer data from MEMS inertial sensors to signal analyzers, traditional wiring methods may be utilized. Such methods provide reliable data transfer and are simple to integrate. However, in order to study complex structures, multiple inertial sensors, attached to different locations on a structure, are required. In such cases, using wires increases complexity and eliminates possibility of achieving long distance monitoring. Therefore, there is a need to implement wireless communications capabilities to MEMS sensors. In this thesis, two different wireless communication systems have been developed to achieve wireless health monitoring of structures using MEMS inertial sensors. One of the systems is designed to transmit analog signals, while the other transmits digital signals. The analog wireless system is characterized by a linear frequency response function in the range of 400 Hz to 16 kHz, which covers the frequency bandwidth of the MEMS inertial sensors. This system is used to perform modal analysis of a test structure by applying multiple sensors to the structure. To verify the results obtained with MEMS inertial sensors, noninvasive, laser optoelectronic holography (OEH) methodology is utilized to determine modal characteristics of the structure. The structure is also modeled with analytical and computational methods for correlation of and verification with the experimental measurements. Results indicate that attachment of MEMS inertial sensors, in spite of their small mass, has measurable effects on the modal characteristics of the structure being considered, verifying their applicability in health monitoring of structures. The digital wireless system is used to perform high resolution tilt and rotation measurements of an object subjected to angular and linear accelerations. Since the system has been developed based on a microcontroller, programs have been developed to interface the output signals of the sensors to the microcontroller and RF components. The system is calibrated using the actual driving electronics of the MEMS sensors, and it has achieved an angular resolution of 1.8 mrad. The results show viability of the wireless MEMS inertial sensors in applications requiring accurate tilt and rotation measurements. Additional results presented included application of a MEMS gyroscope and microcontroller to perform angular rate measurements. Since the MEMS gyroscope only generates analog output signals, an analog to digital conversion circuit was developed. Also, a program has been developed to perform analog to digital conversion with two decimal places of accuracy. The experimental results demonstrate feasibility of using the microcontroller and the gyroscope to perform wireless angular rate measurements

    System design of a low-power three-axis underdamped MEMS accelerometer with simultaneous electrostatic damping control

    Get PDF
    Recently, consumer electronics industry has known a spectacular growth that would have not been possible without pushing the integration barrier further and further. Micro Electro Mechanical Systems (MEMS) inertial sensors (e.g. accelerometers, gyroscopes) provide high performance, low power, low die cost solutions and are, nowadays, embedded in most consumer applications. In addition, the sensors fusion has become a new trend and combo sensors are gaining growing popularity since the co-integration of a three-axis MEMS accelerometer and a three-axis MEMS gyroscope provides complete navigation information. The resulting device is an Inertial measurement unit (IMU) able to sense multiple Degrees of Freedom (DoF). Nevertheless, the performances of the accelerometers and the gyroscopes are conditioned by the MEMS cavity pressure: the accelerometer is usually a damped system functioning under an atmospheric pressure while the gyroscope is a highly resonant system. Thus, to conceive a combo sensor, aunique low cavity pressure is required. The integration of both transducers within the same low pressure cavity necessitates a method to control and reduce the ringing phenomena by increasing the damping factor of the MEMS accelerometer. Consequently, the aim of the thesis is the design of an analog front-end interface able to sense and control an underdamped three-axis MEMSaccelerometer. This work proposes a novel closed-loop accelerometer interface achieving low power consumption The design challenge consists in finding a trade-off between the sampling frequency, the settling time and the circuit complexity since the sensor excitation plates are multiplexed between the measurement and the damping phases. In this context, a patenteddamping sequence (simultaneous damping) has been conceived to improve the damping efficiency over the state of the art approach performances (successive damping). To investigate the feasibility of the novel electrostatic damping control architecture, several mathematical models have been developed and the settling time method is used to assess the damping efficiency. Moreover, a new method that uses the multirate signal processing theory and allows the system stability study has been developed. This very method is used to conclude on the loop stability for a certain sampling frequency and loop gain value. Next, a 0.18μm CMOS implementation of the entire accelerometer signal chain is designed and validated

    Fully Monolithic CMOS Nickel Micromechanical Resonator Oscillator for Wireless Communications.

    Full text link
    A nickel surface-micromachining technology offering various electrode-to-resonator gap materials is presented that is particularly suitable for high-Q, low impedance MEMS-based vibrating resonators. The low temperature of this nickel fabrication technology makes it amenable to post-processing over finished foundry CMOS wafers, even those using advanced low-k, low temperature dielectrics around metallization to decrease inter-connect capacitance. Such a MEMS-last process technology is used in this work to dem-onstrate a fully monolithic MEMS-based oscillator comprised of a nickel disk resonator array surface-micromachined over foundry CMOS. To achieve resonator motional resistances below 5.8 k with adequate quality factor, a mechanically-coupled array of resonators is used that actually realizes a multi-pole fil-ter structure, from which a single mode can be selected and other modes can be sup-pressed by proper electrode phasing. To attain higher frequencies, a nickel wine-glass mode disk resonator with a nitride capacitive transducer gaps was demonstrated at fre-quencies approaching 60 MHz with Q’s as high as 54,507, which is the highest to date for any micro-scale metal resonator in the VHF range. To boost frequencies to the UHF range, vibrating nickel micromechanical spoke-supported ring resonators were demon-strated at 425.7 MHz with Q’s as high as 2,467. These devices employed an anchor iso-lating spoke-supported ring geometry along with notched support attachments between the ring structure and supporting beams to achieve the highest reported vibrating fre-quency to date for any micro-scale metal resonator. Finally, a fully monolithic oscillator was achieved using MEMS-last integration to fabricate a resonator array of nine nickel flexural-mode disks over foundry CMOS cir-cuitry. The oscillator demonstrated a measured phase noise of -95 dBc/Hz at a 10 kHz offset from its 10.92-MHz carrier frequency, which is adequate for some low-end timing applications. This, together with its low power consumption of 350 μW, and the potential for full integration of integrated circuits and MEMS devices onto a single chip, makes the fully monolithic CMOS nickel micromechanical disk-array resonator oscillator presented here a reasonable on-chip replacement for quartz crystal reference oscillators in low-end applications.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58524/1/wlhuang_1.pd
    • …
    corecore