1,036 research outputs found

    Uncovering the Potential of Federated Learning: Addressing Algorithmic and Data-driven Challenges under Privacy Restrictions

    Get PDF
    Federated learning is a groundbreaking distributed machine learning paradigm that allows for the collaborative training of models across various entities without directly sharing sensitive data, ensuring privacy and robustness. This Ph.D. dissertation delves into the intricacies of federated learning, investigating the algorithmic and data-driven challenges of deep learning models in the presence of additive noise in this framework. The main objective is to provide strategies to measure the generalization, stability, and privacy-preserving capabilities of these models and further improve them. To this end, five noise infusion mechanisms at varying noise levels within centralized and federated learning settings are explored. As model complexity is a key component of the generalization and stability of deep learning models during training and evaluation, a comparative analysis of three Convolutional Neural Network (CNN) architectures is provided. A key contribution of this study is introducing specific metrics for training with noise. Signal-to-Noise Ratio (SNR) is introduced as a quantitative measure of the trade-off between privacy and training accuracy of noise-infused models, aiming to find the noise level that yields optimal privacy and accuracy. Moreover, the Price of Stability and Price of Anarchy are defined in the context of privacy-preserving deep learning, contributing to the systematic investigation of the noise infusion mechanisms to enhance privacy without compromising performance. This research sheds light on the delicate balance between these critical factors, fostering a deeper understanding of the implications of noise-based regularization in machine learning. The present study also explores a real-world application of federated learning in weather prediction applications that suffer from the issue of imbalanced datasets. Utilizing data from multiple sources combined with advanced data augmentation techniques improves the accuracy and generalization of weather prediction models, even when dealing with imbalanced datasets. Overall, federated learning is pivotal in harnessing decentralized datasets for real-world applications while safeguarding privacy. By leveraging noise as a tool for regularization and privacy enhancement, this research study aims to contribute to the development of robust, privacy-aware algorithms, ensuring that AI-driven solutions prioritize both utility and privacy

    Digging deeper: Development and application of an untargeted exometabolomics approach to identify biogeochemical hotspots of dissolved organic matter vulnerability in Arctic soils

    Get PDF
    Arctic soils contain vast reserves of carbon (C) that, with rising temperatures, may become a significant source of greenhouse gases (GHGs) (i.e. CO2, CH4, N2O) due to increased microbial decomposition of soil organic matter (SOM). However, there are significant spatial variations in GHG production that lead to hotspots of C release across the landscape, creating significant uncertainty in climate models. Reliably predicting the magnitude of C loss via microbial production of GHGs, and the proportion lost as either CO2 or CH4, depends on many factors, including soil temperature and moisture, microbial community structure and function, as well as the composition and availability of the most labile SOM pool—low molecular weight dissolved organic matter (LMW DOM). While the effects of temperature and moisture on GHG production in Arctic soils have been studied extensively, there is a dearth of information on the effects of LMW DOM chemistry and its potential to be a predictive chemical signal of biological hotspots of C release, in large part due to unique analytical challenges. LMW DOM is an incredibly complex and dynamic mixture of small molecules from both biotic and abiotic origin that turnover on the order of days or even hours and are obscured by countless other interfering signals in the soil, each a complicating factor in isolation, detection, and quantitation. Recent advancements in liquid chromatography mass spectrometry (LC/MS) have provided a means for sensitive, robust, and high-throughput measurements of LMW DOM composition and availability but have not yet been applied in Arctic soils. In this dissertation, an untargeted LC/MS approach for characterizing LMW DOM availability was developed and evaluated, benchmarking its analytical performance in Arctic soils for the first time. The optimized approach was then applied to soils from two Arctic ecosystems to measure variations in LMW DOM across the landscape, due to soil depth, aboveground vegetation, topography, or level of degradation due to thaw. In addition to establishing the LC/MS measurements and data interpretation, this dissertation also had several key interdisciplinary components including remote-location field sample collection, establishing an accessible data analysis pipeline, and examining this work from a public policy perspective

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    Mitmekesiste bioloogiliste andmete ĂĽhendamine ja analĂĽĂĽs

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneTänu tehnoloogiate arengule on bioloogiliste andmete maht viimastel aastatel mitmekordistunud. Need andmed katavad erinevaid bioloogia valdkondi. Piirdudes vaid ühe andmestikuga saab bioloogilisi protsesse või haigusi uurida vaid ühest aspektist korraga. Seetõttu on tekkinud üha suurem vajadus masinõppe meetodite järele, mis aitavad kombineerida eri valdkondade andmeid, et uurida bioloogilisi protsesse tervikuna. Lisaks on nõudlus usaldusväärsete haigusspetsiifiliste andmestike kogude järele, mis võimaldaks vastavaid analüüse efektiivsemalt läbi viia. Käesolev väitekiri kirjeldab, kuidas rakendada masinõppel põhinevaid integratsiooni meetodeid erinevate bioloogiliste küsimuste uurimiseks. Me näitame kuidas integreeritud andmetel põhinev analüüs võimaldab paremini aru saada bioloogilistes protsessidest kolmes valdkonnas: Alzheimeri tõbi, toksikoloogia ja immunoloogia. Alzheimeri tõbi on vanusega seotud neurodegeneratiivne haigus millel puudub efektiivne ravi. Väitekirjas näitame, kuidas integreerida erinevaid Alzheimeri tõve spetsiifilisi andmestikke, et moodustada heterogeenne graafil põhinev Alzheimeri spetsiifiline andmestik HENA. Seejärel demonstreerime süvaõppe meetodi, graafi konvolutsioonilise tehisnärvivõrgu, rakendamist HENA-le, et leida potentsiaalseid haigusega seotuid geene. Teiseks uurisime kroonilist immuunpõletikulist haigust psoriaasi. Selleks kombineerisime patsientide verest ja nahast pärinevad laboratoorsed mõõtmised kliinilise infoga ning integreerisime vastavad analüüside tulemused tuginedes valdkonnaspetsiifilistel teadmistel. Töö viimane osa keskendub toksilisuse testimise strateegiate edasiarendusele. Toksilisuse testimine on protsess, mille käigus hinnatakse, kas uuritavatel kemikaalidel esineb organismile kahjulikke toimeid. See on vajalik näiteks ravimite ohutuse hindamisel. Töös me tuvastasime sarnase toimemehhanismiga toksiliste ühendite rühmad. Lisaks arendasime klassifikatsiooni mudeli, mis võimaldab hinnata uute ühendite toksilisust.A fast advance in biotechnological innovation and decreasing production costs led to explosion of experimental data being produced in laboratories around the world. Individual experiments allow to understand biological processes, e.g. diseases, from different angles. However, in order to get a systematic view on disease it is necessary to combine these heterogeneous data. The large amounts of diverse data requires building machine learning models that can help, e.g. to identify which genes are related to disease. Additionally, there is a need to compose reliable integrated data sets that researchers could effectively work with. In this thesis we demonstrate how to combine and analyze different types of biological data in the example of three biological domains: Alzheimer’s disease, immunology, and toxicology. More specifically, we combine data sets related to Alzheimer’s disease into a novel heterogeneous network-based data set for Alzheimer’s disease (HENA). We then apply graph convolutional networks, state-of-the-art deep learning methods, to node classification task in HENA to find genes that are potentially associated with the disease. Combining patient’s data related to immune disease helps to uncover its pathological mechanisms and to find better treatments in the future. We analyse laboratory data from patients’ skin and blood samples by combining them with clinical information. Subsequently, we bring together the results of individual analyses using available domain knowledge to form a more systematic view on the disease pathogenesis. Toxicity testing is the process of defining harmful effects of the substances for the living organisms. One of its applications is safety assessment of drugs or other chemicals for a human organism. In this work we identify groups of toxicants that have similar mechanism of actions. Additionally, we develop a classification model that allows to assess toxic actions of unknown compounds.https://www.ester.ee/record=b523255
    • …
    corecore