5,378 research outputs found

    Buying Private Data without Verification

    Get PDF
    We consider the problem of designing a survey to aggregate non-verifiable information from a privacy-sensitive population: an analyst wants to compute some aggregate statistic from the private bits held by each member of a population, but cannot verify the correctness of the bits reported by participants in his survey. Individuals in the population are strategic agents with a cost for privacy, \ie, they not only account for the payments they expect to receive from the mechanism, but also their privacy costs from any information revealed about them by the mechanism's outcome---the computed statistic as well as the payments---to determine their utilities. How can the analyst design payments to obtain an accurate estimate of the population statistic when individuals strategically decide both whether to participate and whether to truthfully report their sensitive information? We design a differentially private peer-prediction mechanism that supports accurate estimation of the population statistic as a Bayes-Nash equilibrium in settings where agents have explicit preferences for privacy. The mechanism requires knowledge of the marginal prior distribution on bits bib_i, but does not need full knowledge of the marginal distribution on the costs cic_i, instead requiring only an approximate upper bound. Our mechanism guarantees ϵ\epsilon-differential privacy to each agent ii against any adversary who can observe the statistical estimate output by the mechanism, as well as the payments made to the n−1n-1 other agents j≠ij\neq i. Finally, we show that with slightly more structured assumptions on the privacy cost functions of each agent, the cost of running the survey goes to 00 as the number of agents diverges.Comment: Appears in EC 201

    Computer-aided verification in mechanism design

    Full text link
    In mechanism design, the gold standard solution concepts are dominant strategy incentive compatibility and Bayesian incentive compatibility. These solution concepts relieve the (possibly unsophisticated) bidders from the need to engage in complicated strategizing. While incentive properties are simple to state, their proofs are specific to the mechanism and can be quite complex. This raises two concerns. From a practical perspective, checking a complex proof can be a tedious process, often requiring experts knowledgeable in mechanism design. Furthermore, from a modeling perspective, if unsophisticated agents are unconvinced of incentive properties, they may strategize in unpredictable ways. To address both concerns, we explore techniques from computer-aided verification to construct formal proofs of incentive properties. Because formal proofs can be automatically checked, agents do not need to manually check the properties, or even understand the proof. To demonstrate, we present the verification of a sophisticated mechanism: the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and Malekian. This mechanism presents new challenges for formal verification, including essential use of randomness from both the execution of the mechanism and from the prior type distributions. As an immediate consequence, our work also formalizes Bayesian incentive compatibility for the entire family of mechanisms derived via this reduction. Finally, as an intermediate step in our formalization, we provide the first formal verification of incentive compatibility for the celebrated Vickrey-Clarke-Groves mechanism

    Truthful Mechanisms for Agents that Value Privacy

    Get PDF
    Recent work has constructed economic mechanisms that are both truthful and differentially private. In these mechanisms, privacy is treated separately from the truthfulness; it is not incorporated in players' utility functions (and doing so has been shown to lead to non-truthfulness in some cases). In this work, we propose a new, general way of modelling privacy in players' utility functions. Specifically, we only assume that if an outcome oo has the property that any report of player ii would have led to oo with approximately the same probability, then oo has small privacy cost to player ii. We give three mechanisms that are truthful with respect to our modelling of privacy: for an election between two candidates, for a discrete version of the facility location problem, and for a general social choice problem with discrete utilities (via a VCG-like mechanism). As the number nn of players increases, the social welfare achieved by our mechanisms approaches optimal (as a fraction of nn)

    Truthful Linear Regression

    Get PDF
    We consider the problem of fitting a linear model to data held by individuals who are concerned about their privacy. Incentivizing most players to truthfully report their data to the analyst constrains our design to mechanisms that provide a privacy guarantee to the participants; we use differential privacy to model individuals' privacy losses. This immediately poses a problem, as differentially private computation of a linear model necessarily produces a biased estimation, and existing approaches to design mechanisms to elicit data from privacy-sensitive individuals do not generalize well to biased estimators. We overcome this challenge through an appropriate design of the computation and payment scheme.Comment: To appear in Proceedings of the 28th Annual Conference on Learning Theory (COLT 2015
    • …
    corecore