138,233 research outputs found

    Spectral Curves, Opers and Integrable Systems

    Get PDF
    We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spectral data are principal G-bundles on an algebraic curve, equipped with an abelian reduction near one point. The flows on the spectral side come from the action of a Heisenberg subgroup of the loop group. The differential data are flat connections known as opers. The flows on the differential side come from a generalized Drinfeld-Sokolov hierarchy. Our isomorphism between the two sides provides a geometric description of the entire phase space of the Drinfeld-Sokolov hierarchy. It extends the Krichever construction of special algebro-geometric solutions of the n-th KdV hierarchy, corresponding to G=SL(n). An interesting feature is the appearance of formal spectral curves, replacing the projective spectral curves of the classical approach. The geometry of these (usually singular) curves reflects the fine structure of loop groups, in particular the detailed classification of their Cartan subgroups. To each such curve corresponds a homogeneous space of the loop group and a soliton system. Moreover the flows of the system have interpretations in terms of Jacobians of formal curves.Comment: 64 pages, Latex, final version to appear in Publications IHE

    Multipartite quantum correlations: symplectic and algebraic geometry approach

    Full text link
    We review a geometric approach to classification and examination of quantum correlations in composite systems. Since quantum information tasks are usually achieved by manipulating spin and alike systems or, in general, systems with a finite number of energy levels, classification problems are usually treated in frames of linear algebra. We proposed to shift the attention to a geometric description. Treating consistently quantum states as points of a projective space rather than as vectors in a Hilbert space we were able to apply powerful methods of differential, symplectic and algebraic geometry to attack the problem of equivalence of states with respect to the strength of correlations, or, in other words, to classify them from this point of view. Such classifications are interpreted as identification of states with `the same correlations properties' i.e. ones that can be used for the same information purposes, or, from yet another point of view, states that can be mutually transformed one to another by specific, experimentally accessible operations. It is clear that the latter characterization answers the fundamental question `what can be transformed into what \textit{via} available means?'. Exactly such an interpretations, i.e, in terms of mutual transformability can be clearly formulated in terms of actions of specific groups on the space of states and is the starting point for the proposed methods.Comment: 29 pages, 9 figures, 2 tables, final form submitted to the journa

    Classification of first order sesquilinear forms

    Get PDF
    A natural way to obtain a system of partial differential equations on a manifold is to vary a suitably defined sesquilinear form. The sesquilinear forms we study are Hermitian forms acting on sections of the trivial Cn\mathbb{C}^n-bundle over a smooth mm-dimensional manifold without boundary. More specifically, we are concerned with first order sesquilinear forms, namely, those generating first order systems. Our goal is to classify such forms up to GL(n,C)GL(n,\mathbb{C}) gauge equivalence. We achieve this classification in the special case of m=4m=4 and n=2n=2 by means of geometric and topological invariants (e.g. Lorentzian metric, spin/spinc^c structure, electromagnetic covector potential) naturally contained within the sesquilinear form - a purely analytic object. Essential to our approach is the interplay of techniques from analysis, geometry, and topology.Comment: Minor edit

    The differential geometric structure in supervised learning of classifiers

    Get PDF
    In this thesis, we study the overfitting problem in supervised learning of classifiers from a geometric perspective. As with many inverse problems, learning a classification function from a given set of example-label pairs is an ill-posed problem, i.e., there exist infinitely many classification functions that can correctly predict the class labels for all training examples. Among them, according to Occam's razor, simpler functions are favored since they are less overfitted to training examples and are therefore expected to perform better on unseen examples. The standard technique to enforce Occam's razor is to introduce a regularization scheme, which penalizes some type of complexity of the learned classification function. Some widely used regularization techniques are functional norm-based (Tikhonov) techniques, ensemble-based techniques, early stopping techniques, etc. However, there is important geometric information in the learned classification function that is closely related to overfitting, and has been overlooked by previous methods. In this thesis, we study the complexity of a classification function from a new geometric perspective. In particular, we investigate the differential geometric structure in the submanifold corresponding to the estimator of the class probability P(y|x), based on the observation that overfitting produces rapid local oscillations and hence large mean curvature of this submanifold. We also show that our geometric perspective of supervised learning is naturally related to an elastic model in physics, where our complexity measure is a high dimensional extension of the surface energy in physics. This study leads to a new geometric regularization approach for supervised learning of classifiers. In our approach, the learning process can be viewed as a submanifold fitting problem that is solved by a mean curvature flow method. In particular, our approach finds the submanifold by iteratively fitting the training examples in a curvature or volume decreasing manner. Our technique is unified for both binary and multiclass classification, and can be applied to regularize any classification function that satisfies two requirements: firstly, an estimator of the class probability can be obtained; secondly, first and second derivatives of the class probability estimator can be calculated. For applications, where we apply our regularization technique to standard loss functions for classification, our RBF-based implementation compares favorably to widely used regularization methods for both binary and multiclass classification. We also design a specific algorithm to incorporate our regularization technique into the standard forward-backward training of deep neural networks. For theoretical analysis, we establish Bayes consistency for a specific loss function under some mild initialization assumptions. We also discuss the extension of our approach to situations where the input space is a submanifold, rather than a Euclidean space.2018-11-30T00:00:00

    Moduli Spaces of Flat GSp-Bundles

    Get PDF
    A classical problem in the theory of differential equations is the classification of first-order singular differential operators up to gauge equivalence. A related algebro-geometric problem involves the construction of moduli spaces of meromorphic connections. In 2001, P. Boalch constructed well-behaved moduli spaces in the case that each of the singularities are diagonalizable. In a recent series of papers, C. Bremer and D. Sage developed a new approach to the study of the local behavior of meromorphic connections using a geometric variant of fundamental strata, a tool originally introduced by C. Bushnell for the study of p-adic representation theory. Not only does this approach allow for the generalization of diagonalizable singularities, but it is adaptable to the study of flat G-bundles for G a reductive group. In this dissertation, the objects of study are irregular singular flat GSp-bundles. The main results of this dissertation are two-fold. First, the local theory of fundamental strata for GSp-bundles is made explicit; in particular, the fundamental strata necessary for the construction of well-behaved moduli spaces are shown to be associated to uniform symplectic lattice chain filtrations. Second, a construction of moduli spaces of flat GSp-bundles is given which has many of the geometric features that have been important in the work of P. Boalch and others
    corecore