124 research outputs found

    Deep Learning Localization for Self-driving Cars

    Get PDF
    Identifying the location of an autonomous car with the help of visual sensors can be a good alternative to traditional approaches like Global Positioning Systems (GPS) which are often inaccurate and absent due to insufficient network coverage. Recent research in deep learning has produced excellent results in different domains leading to the proposition of this thesis which uses deep learning to solve the problem of localization in smart cars with visual data. Deep Convolutional Neural Networks (CNNs) were used to train models on visual data corresponding to unique locations throughout a geographic location. In order to evaluate the performance of these models, multiple datasets were created from Google Street View as well as manually by driving a golf cart around the campus while collecting GPS tagged frames. The efficacy of the CNN models was also investigated across different weather/light conditions. Validation accuracies as high as 98% were obtained from some of these models, proving that this novel method has the potential to act as an alternative or aid to traditional GPS based localization methods for cars. The root mean square (RMS) precision of Google Maps is often between 2-10m. However, the precision required for the navigation of self-driving cars is between 2-10cm. Empirically, this precision has been achieved with the help of different error-correction systems on GPS feedback. The proposed method was able to achieve an approximate localization precision of 25 cm without the help of any external error correction system

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav

    Efficient multi-level scene understanding in videos

    No full text
    Automatic video parsing is a key step towards human-level dynamic scene understanding, and a fundamental problem in computer vision. A core issue in video understanding is to infer multiple scene properties of a video in an efficient and consistent manner. This thesis addresses the problem of holistic scene understanding from monocular videos, which jointly reason about semantic and geometric scene properties from multiple levels, including pixelwise annotation of video frames, object instance segmentation in spatio-temporal domain, and/or scene-level description in terms of scene categories and layouts. We focus on four main issues in the holistic video understanding: 1) what is the representation for consistent semantic and geometric parsing of videos? 2) how do we integrate high-level reasoning (e.g., objects) with pixel-wise video parsing? 3) how can we do efficient inference for multi-level video understanding? and 4) what is the representation learning strategy for efficient/cost-aware scene parsing? We discuss three multi-level video scene segmentation scenarios based on different aspects of scene properties and efficiency requirements. The first case addresses the problem of consistent geometric and semantic video segmentation for outdoor scenes. We propose a geometric scene layout representation, or a stage scene model, to efficiently capture the dependency between the semantic and geometric labels. We build a unified conditional random field for joint modeling of the semantic class, geometric label and the stage representation, and design an alternating inference algorithm to minimize the resulting energy function. The second case focuses on the problem of simultaneous pixel-level and object-level segmentation in videos. We propose to incorporate foreground object information into pixel labeling by jointly reasoning semantic labels of supervoxels, object instance tracks and geometric relations between objects. In order to model objects, we take an exemplar approach based on a small set of object annotations to generate a set of object proposals. We then design a conditional random field framework that jointly models the supervoxel labels and object instance segments. To scale up our method, we develop an active inference strategy to improve the efficiency of multi-level video parsing, which adaptively selects an informative subset of object proposals and performs inference on the resulting compact model. The last case explores the problem of learning a flexible representation for efficient scene labeling. We propose a dynamic hierarchical model that allows us to achieve flexible trade-offs between efficiency and accuracy. Our approach incorporates the cost of feature computation and model inference, and optimizes the model performance for any given test-time budget. We evaluate all our methods on several publicly available video and image semantic segmentation datasets, and demonstrate superior performance in efficiency and accuracy. Keywords: Semantic video segmentation, Multi-level scene understanding, Efficient inference, Cost-aware scene parsin
    corecore