42 research outputs found

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    A MAC protocol for IP-based CDMA wireless networks.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2005.The evolution of the intemet protocol (IP) to offer quality of service (QoS) makes it a suitable core network protocol for next generation networks (NGN). The QoS features incorporated to IP will enable future lP-based wireless networks to meet QoS requirements of various multimedia traffic. The Differentiated Service (Diffserv) Architecture is a promising QoS technology due to its scalability which arises from traffic flow aggregates. For this reason, in this dissertation a network infrastructure based on DiffServ is assumed. This architecture provides assured service (AS) and premium service (PrS) classes in addition to best-effort service (BE). The medium access control (MAC) protocol is one of the important design issues in wireless networks. In a wireless network carrying multimedia traffic, the MAC protocol is required to provide simultaneous support for a wide variety of traffic types, support traffic with delay and jitter bounds, and assign bandwidth in an efficient and fair manner among traffic classes. Several MAC protocols capable of supporting multimedia services have been proposed in the literature, the majority of which were designed for wireless A1M (Asynchronous Transfer Mode). The focus of this dissertation is on time division multiple access and code division multiple access (TDMAlCDMA) based MAC protocols that support QoS in lP-based wireless networks. This dissertation begins by giving a survey of wireless MAC protocols. The survey considers MAC protocols for centralised wireless networks and classifies them according to their multiple access technology and as well as their method of resource sharing. A novel TDMAlCDMA based MAC protocol incorporating techniques from existing protocols is then proposed. To provide the above-mentioned services, the bandwidth is partitioned amongst AS and PrS classes. The BE class utilizes the remaining bandwidth from the two classes because it does not have QoS requirements. The protocol employs a demand assignment (DA) scheme to support traffic from PrS and AS classes. BE traffic is supported by a random reservation access scheme with dual multiple access interference (MAl) admission thresholds. The performance of the protocol, i.e. the AS or PrS call blocking probability, and BE throughput are evaluated through Markov analytical models and Monte-Carlo simulations. Furthermore, the protocol is modified and incorporated into IEEE 802.16 broadband wireless access (BWA) network
    corecore