609 research outputs found

    Applications of biased-randomized algorithms and simheuristics in integrated logistics

    Get PDF
    Transportation and logistics (T&L) activities play a vital role in the development of many businesses from different industries. With the increasing number of people living in urban areas, the expansion of on-demand economy and e-commerce activities, the number of services from transportation and delivery has considerably increased. Consequently, several urban problems have been potentialized, such as traffic congestion and pollution. Several related problems can be formulated as a combinatorial optimization problem (COP). Since most of them are NP-Hard, the finding of optimal solutions through exact solution methods is often impractical in a reasonable amount of time. In realistic settings, the increasing need for 'instant' decision-making further refutes their use in real life. Under these circumstances, this thesis aims at: (i) identifying realistic COPs from different industries; (ii) developing different classes of approximate solution approaches to solve the identified T&L problems; (iii) conducting a series of computational experiments to validate and measure the performance of the developed approaches. The novel concept of 'agile optimization' is introduced, which refers to the combination of biased-randomized heuristics with parallel computing to deal with real-time decision-making.Las actividades de transporte y logística (T&L) juegan un papel vital en el desarrollo de muchas empresas de diferentes industrias. Con el creciente número de personas que viven en áreas urbanas, la expansión de la economía a lacarta y las actividades de comercio electrónico, el número de servicios de transporte y entrega ha aumentado considerablemente. En consecuencia, se han potencializado varios problemas urbanos, como la congestión del tráfico y la contaminación. Varios problemas relacionados pueden formularse como un problema de optimización combinatoria (COP). Dado que la mayoría de ellos son NP-Hard, la búsqueda de soluciones óptimas a través de métodos de solución exactos a menudo no es práctico en un período de tiempo razonable. En entornos realistas, la creciente necesidad de una toma de decisiones "instantánea" refuta aún más su uso en la vida real. En estas circunstancias, esta tesis tiene como objetivo: (i) identificar COP realistas de diferentes industrias; (ii) desarrollar diferentes clases de enfoques de solución aproximada para resolver los problemas de T&L identificados; (iii) realizar una serie de experimentos computacionales para validar y medir el desempeño de los enfoques desarrollados. Se introduce el nuevo concepto de optimización ágil, que se refiere a la combinación de heurísticas aleatorias sesgadas con computación paralela para hacer frente a la toma de decisiones en tiempo real.Les activitats de transport i logística (T&L) tenen un paper vital en el desenvolupament de moltes empreses de diferents indústries. Amb l'augment del nombre de persones que viuen a les zones urbanes, l'expansió de l'economia a la carta i les activitats de comerç electrònic, el nombre de serveis del transport i el lliurament ha augmentat considerablement. En conseqüència, s'han potencialitzat diversos problemes urbans, com ara la congestió del trànsit i la contaminació. Es poden formular diversos problemes relacionats com a problema d'optimització combinatòria (COP). Com que la majoria són NP-Hard, la recerca de solucions òptimes mitjançant mètodes de solució exactes sovint no és pràctica en un temps raonable. En entorns realistes, la creixent necessitat de prendre decisions "instantànies" refuta encara més el seu ús a la vida real. En aquestes circumstàncies, aquesta tesi té com a objectiu: (i) identificar COP realistes de diferents indústries; (ii) desenvolupar diferents classes d'aproximacions aproximades a la solució per resoldre els problemes identificats de T&L; (iii) la realització d'una sèrie d'experiments computacionals per validar i mesurar el rendiment dels enfocaments desenvolupats. S'introdueix el nou concepte d'optimització àgil, que fa referència a la combinació d'heurístiques esbiaixades i aleatòries amb informàtica paral·lela per fer front a la presa de decisions en temps real.Tecnologies de la informació i de xarxe

    Routing and scheduling for a last-mile transportation system

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Essays on Shipment Consolidation Scheduling and Decision Making in the Context of Flexible Demand

    Get PDF
    This dissertation contains three essays related to shipment consolidation scheduling and decision making in the presence of flexible demand. The first essay is presented in Section 1. This essay introduces a new mathematical model for shipment consolidation scheduling for a two-echelon supply chain. The problem addresses shipment coordination and consolidation decisions that are made by a manufacturer who provides inventory replenishments to multiple downstream distribution centers. Unlike previous studies, the consolidation activities in this problem are not restricted to specific policies such as aggregation of shipments at regular times or consolidating when a predetermined quantity has accumulated. Rather, we consider the construction of a detailed shipment consolidation schedule over a planning horizon. We develop a mixed-integer quadratic optimization model to identify the shipment consolidation schedule that minimizes total cost. A genetic algorithm is developed to handle large problem instances. The other two essays explore the concept of flexible demand. In Section 2, we introduce a new variant of the vehicle routing problem (VRP): the vehicle routing problem with flexible repeat visits (VRP-FRV). This problem considers a set of customers at certain locations with certain maximum inter-visit time requirements. However, they are flexible in their visit times. The VRP-FRV has several real-world applications. One scenario is that of caretakers who provide service to elderly people at home. Each caretaker is assigned a number of elderly people to visit one or more times per day. Elderly people differ in their requirements and the minimum frequency at which they need to be visited every day. The VRP-FRV can also be imagined as a police patrol routing problem where the customers are various locations in the city that require frequent observations. Such locations could include known high-crime areas, high-profile residences, and/or safe houses. We develop a math model to minimize the total number of vehicles needed to cover the customer demands and determine the optimal customer visit schedules and vehicle routes. A heuristic method is developed to handle large problem instances. In the third study, presented in Section 3, we consider a single-item cyclic coordinated order fulfillment problem with batch supplies and flexible demands. The system in this study consists of multiple suppliers who each deliver a single item to a central node from which multiple demanders are then replenished. Importantly, demand is flexible and is a control action that the decision maker applies to optimize the system. The objective is to minimize total system cost subject to several operational constraints. The decisions include the timing and sizes of batches delivered by the suppliers to the central node and the timing and amounts by which demanders are replenished. We develop an integer programing model, provide several theoretical insights related to the model, and solve the math model for different problem sizes

    Small traditional retailers in emerging markets

    Get PDF
    abstract within pdf

    Planning and reconfigurable control of a fleet of unmanned vehicles for taxi operations in airport environment

    Get PDF
    The optimization of airport operations has gained increasing interest by the aeronautical community, due to the substantial growth in the number of airport movements (landings and take-offs) experienced in the past decades all over the world. Forecasts have confirmed this trend also for the next decades. The result of the expansion of air traffic is an increasing congestion of airports, especially in taxiways and runways, leading to additional amount of fuel burnt by airplanes during taxi operations, causing additional pollution and costs for airlines. In order to reduce the impact of taxi operations, different solutions have been proposed in literature; the solution which this dissertation refers to uses autonomous electric vehicles to tow airplanes between parking lots and runways. Although several analyses have been proposed in literature, showing the feasibility and the effectiveness of this approach in reducing the environmental impact, at the beginning of the doctoral activity no solutions were proposed, on how to manage the fleet of unmanned vehicles inside the airport environment. Therefore, the research activity has focused on the development of algorithms able to provide pushback tractor (also referred as tugs) autopilots with conflict-free schedules. The main objective of the optimization algorithms is to minimize the tug energy consumption, while performing just-in-time runway operations: departing airplanes are delivered only when they can take-off and the taxi-in phase starts as soon as the aircraft clears the runway and connects to the tractor. Two models, one based on continuous time and one on discrete time evolution, were developed to simulate the taxi phases within the optimization scheme. A piecewise-linear model has also been proposed to evaluate the energy consumed by the tugs during the assigned missions. Furthermore, three optimization algorithms were developed: two hybrid versions of the particle swarm optimization and a tree search heuristic. The following functional requirements for the management algorithm were defined: the optimization model must be easily adapted to different airports with different layout (reconfigurability); the generated schedule must always be conflict-free; and the computational time required to process a time horizon of 1h must be less than 15min. In order to improve its performance, the particle swarm optimization was hybridized with a hill-climb meta-heuristic; a second hybridization was performed by means of the random variable search, an algorithm of the family of the variable neighborhood search. The neighborhood size for the random variable search was considered varying with inverse proportionality to the distance between the actual considered solution and the optimal one found so far. Finally, a tree search heuristic was developed to find the runway sequence, among all the possible sequences of take-offs and landings for a given flight schedule, which can be realized with a series of taxi trajectories that require minimum energy consumption. Given the taxi schedule generated by the aforementioned optimization algorithms a tug dispatch algorithm, assigns a vehicle to each mission. The three optimization schemes and the two mathematical models were tested on several test cases among three airports: the Turin-Caselle airport, the Milan-Malpensa airport, and the Amsterdam airport Schiphol. The cost required to perform the generated schedules using the autonomous tugs was compared to the cost required to perform the taxi using the aircraft engines. The proposed approach resulted always more convenient than the classical one

    Scheduling the scheduling task : a time management perspective on scheduling

    Get PDF
    Time is the most critical resource at the disposal of schedulers. Hence, an adequate management of time from the schedulers may impact positively on the scheduler’s productivity and responsiveness to uncertain scheduling environments. This paper presents a field study of how schedulers make use of their time and makes explicit what time-management decisions and behaviors are available to a scheduler. Based on observations of the field study, we propose a framework to classify and specify key characteristics of common tasks to the scheduling job in terms of their impact on the workflow and workload of a scheduler. We then discuss how such a framework may be used to assess alternative time-management decisions of a scheduler

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Genetic algorithm for process sequencing modelled as the travelling salesman problem with precedence constraints

    Get PDF
    This thesis addresses process sequencing subject to precedence constraints which arises as a subproblem in scheduling, planning and routing problems. The process sequencing problem can be modelled as the Travelling Salesman Problem with Precedence Constraints (TSPPC). In the general Travelling Salesman Problem (TSP) scenario, the salesman must travel from city to city; visiting each city exactly once and wishes to minimize the total distance travelled during the tour of all cities. TSPPC is similar in concept to TSP, except that it has a set of precedence constraints to be followed by the salesman. The exact methods that are used to find an optimal solution of the problem are only capable of handling small and medium sizes of instances. Genetic algorithms (GA) are heuristic optimization techniques based on the principles and mechanisms of natural evolution and can be used to solve larger instances and numerous side constraints with optimal or near-optimal solutions. However, the use of a conventional genetic algorithm procedure for TSP, with an order-based representation, might generate invalid candidate solutions when precedence constraints are involved. In this thesis, a new GA procedure is developed which includes chromosome’s repairing strategy based topological sort to handle the precedence constraints and to generate only feasible solution during the evolutionary process. The procedure to select the task in sequence is based on the “earliest position” techniques. This procedure is combined with a roulette wheel selection, linear order crossover and inversion mutation. The effectiveness and the stability of the proposed GA are then evaluated against a wide range of benchmark problems and the solutions are compared with the results obtained from research results published in the relevant literature. The results from the computational experiments demonstrate that the proposed GA procedure developed in this thesis is capable to tackle large-size problem and reach for optimal solutions. The developed GA procedure improved the performance of the algorithm with less number of generations and less convergence time in achieving optimal solutions. The genetic operators used are capable to always introduce new fitter offspring and free from being trapped in a local optimum. Therefore it can be stated that the proposed genetic algorithm is efficient to solve process sequencing modelled as the travelling salesman problem with precedence constraints. This result will greatly help to solve many real world sequencing problems especially in the field of assembly line design and management

    Innovative business-to-business last-mile solutions:models and algorithms

    Get PDF

    Investigating heuristic and meta-heuristic algorithms for solving pickup and delivery problems

    Get PDF
    The development of effective decision support tools that can be adopted in the transportation industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the Vehicle Routing Problem (VRP) and its related variants is at the heart of scientific research for optimizing logistic planning. One important variant of the VRP is the Pickup and Delivery Problem (PDP). In the PDP, it is generally required to find one or more minimum cost routes to serve a number of customers, where two types of services may be performed at a customer location, a pickup or a delivery. Applications of the PDP are frequently encountered in every day transportation and logistic services, and the problem is likely to assume even greater prominence in the future, due to the increase in e-commerce and Internet shopping. In this research we considered two particular variants of the PDP, the Pickup and Delivery Problem with Time Windows (PDPTW), and the One-commodity Pickup and Delivery Problem (1-PDP). In both problems, the total transportation cost should be minimized, without violating a number of pre-specified problem constraints. In our research, we investigate heuristic and meta-heuristic approaches for solving the selected PDP variants. Unlike previous research in this area, though, we try to focus on handling the difficult problem constraints in a simple and effective way, without complicating the overall solution methodology. Two main aspects of the solution algorithm are directed to achieve this goal, the solution representation and the neighbourhood moves. Based on this perception, we tailored a number of heuristic and meta-heuristic algorithms for solving our problems. Among these algorithms are: Genetic Algorithms, Simulated Annealing, Hill Climbing and Variable Neighbourhood Search. In general, the findings of the research indicate the success of our approach in handling the difficult problem constraints and devising simple and robust solution mechanisms that can be integrated with vehicle routing optimization tools and used in a variety of real world applicationsEThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore