601 research outputs found

    Monitoring and Information Alignment in Pursuit of an IoT-Enabled Self-Sustainable Interoperability

    Get PDF
    To remain competitive with big corporations, small and medium-sized enterprises (SMEs) often need to be more dynamic, adapt to new business situations, react faster, and thereby survive in today‘s global economy. To do so, SMEs normally seek to create consortiums, thus gaining access to new and more opportunities. However, this strategy may also lead to complications. Due to the different sources of enterprise models and semantics, organizations are experiencing difficulties in seamlessly exchanging vital information via electronic means. In their attempt to address this issue, most seek to achieve interoperability by establishing peer-to-peer mappings with different business partners, or by using neutral data standards to regulate communications in optimized networks. Moreover, systems are more and more dynamic, frequently changing to answer new customer‘s requirements, causing new interoperability problems and a reduction of efficiency. Another situation that is constantly changing is the devices used in the enterprises, as the Enterprise Information Systems, devices are used to register internal data, and to be used to monitor several aspects. These devices are constantly changing, following the evolution and growth of the market. So, it is important to monitor these devices and doing a model representation of them. This dissertation proposes a self-sustainable interoperable framework to monitor existing enterprise information systems and their devices, monitor the device/enterprise network for changes and automatically detecting model changes. With this, network harmonization disruptions are detected in a timely way, and possible solutions are suggested to regain the interoperable status, thus enhancing robustness for reaching sustainability of business networks along time

    EUD-MARS: End-User Development of Model-Driven Adaptive Robotics Software Systems

    Get PDF
    Empowering end-users to program robots is becoming more significant. Introducing software engineering principles into end-user programming could improve the quality of the developed software applications. For example, model-driven development improves technology independence and adaptive systems act upon changes in their context of use. However, end-users need to apply such principles in a non-daunting manner and without incurring a steep learning curve. This paper presents EUD-MARS that aims to provide end-users with a simple approach for developing model-driven adaptive robotics software. End-users include people like hobbyists and students who are not professional programmers but are interested in programming robots. EUD-MARS supports robots like hobby drones and educational humanoids that are available for end-users. It offers a tool for software developers and another one for end-users. We evaluated EUD-MARS from three perspectives. First, we used EUD-MARS to program different types of robots and assessed its visual programming language against existing design principles. Second, we asked software developers to use EUD-MARS to configure robots and obtained their feedback on strengths and points for improvement. Third, we observed how end-users explain and develop EUD-MARS programs, and obtained their feedback mainly on understandability, ease of programming, and desirability. These evaluations yielded positive indications of EUD-MARS

    Axon: A Middleware for Robotics

    Get PDF
    The area of multi-robot systems and frameworks has become, in recent years, a hot research area in the field of robotics. This is attributed to the great advances made in robotic hardware, software, and the diversity of robotic systems. The need to integrate different heterogeneous robotic components and systems has led to the birth of robotic middleware. A robotic middleware is an intricate piece of software that masks the heterogeneity of underlying components and provides high-level interfaces that enable developers to make efficient use of the components. A large number of robotic middleware programs exist today. Each one comes with its own design methodologies and complexities. Up to this moment, however, there exists no unified standard for robotic middleware. Moreover, many of the middleware in use today deal with low-level and hardware aspects. This adds unnecessary complexity in research involving robotic behavior, inter-robot collaboration, and other high-level experiments which do not require prior knowledge of low-level details. In addition, the notion of structured lightweight data transfer between robots is not emphasized in existing work. This dissertation tackles the robotic middleware problem from a different perspective. The aim of this work is to develop a robust middleware that is able to handle multiple robots and clients within a laboratory environment. In the proposed middleware, a high-level representation of robots in an environment is introduced. Also, this work introduces the notion of structured and efficient data exchange as an important issue in robotic middleware research. The middleware has been designed and developed using rigorous methodologies and leading edge technologies. Moreover, the middleware’s ability to integrate different types of robots in a seamless manner, as well as its ability to accommodate multiple robots and clients, has been tested and evaluated

    Smart Technologies for Precision Assembly

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the 9th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2020, held virtually in December 2020. The 16 revised full papers and 10 revised short papers presented together with 1 keynote paper were carefully reviewed and selected from numerous submissions. The papers address topics such as assembly design and planning; assembly operations; assembly cells and systems; human centred assembly; and assistance methods in assembly

    Agents and Robots for Reliable Engineered Autonomy

    Get PDF
    This book contains the contributions of the Special Issue entitled "Agents and Robots for Reliable Engineered Autonomy". The Special Issue was based on the successful first edition of the "Workshop on Agents and Robots for reliable Engineered Autonomy" (AREA 2020), co-located with the 24th European Conference on Artificial Intelligence (ECAI 2020). The aim was to bring together researchers from autonomous agents, as well as software engineering and robotics communities, as combining knowledge from these three research areas may lead to innovative approaches that solve complex problems related to the verification and validation of autonomous robotic systems

    Communication blades: modular communications for tangible and embedded interfaces

    Get PDF
    Bladed Tiles is a modular hardware toolkit for building tangible and embedded interface devices. It includes “function blades” and “interaction tiles,” which can provide a flexible, inexpensive, open-ended platform for constructing a wide variety of tangible and embedded interfaces. In this paper, we propose Communication Blades. These are a class of electronic modules with varied computational capabilities for interfacing devices built using bladed tiles toolkit and also for interfacing embedded devices as adapters with external communication networks. These blades provide flexibility by offering the ability to select between different communication technologies and connectivity by providing devices with interoperability over different communication mediums. Furthermore, the modular blade architecture allows different types of communication blades to be plugged in on demand. This reduces the need for development and knowledge of communication protocols by the developers, thus abstracting the underlying complexity. My research work includes studying and designing various communication blades i.e. Serial, USB, Bluetooth and Gumstix. It also includes prototyping, testing and implementing the communication blades

    Non-Dyadic Collaboration In Human-Robot Interaction

    Get PDF

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge
    corecore