2,482 research outputs found

    Atypical hemispheric specialization for faces in infants at risk for autism spectrum disorder

    Full text link
    Among the many experimental findings that tend to distinguish those with and without autism spectrum disorder (ASD) are face processing deficits, reduced hemispheric specialization, and atypical neurostructural and functional connectivity. To investigate the earliest manifestations of these features, we examined lateralization of event-related gamma-band coherence to faces during the first year of life in infants at high risk for autism (HRA; defined as having an older sibling with ASD) who were compared with low-risk comparison (LRC) infants, defined as having no family history of ASD. Participants included 49 HRA and 46 LRC infants who contributed a total of 127 data sets at 6 and 12 months. Electroencephalography was recorded while infants viewed images of familiar/unfamiliar faces. Event-related gamma-band (30-50ā€‰Hz) phase coherence between anterior-posterior electrode pairs for left and right hemispheres was computed. Developmental trajectories for lateralization of intra-hemispheric coherence were significantly different in HRA and LRC infants: by 12 months, HRA infants showed significantly greater leftward lateralization compared with LRC infants who showed rightward lateralization. Preliminary results indicate that infants who later met criteria for ASD were those that showed the greatest leftward lateralization. HRA infants demonstrate an aberrant pattern of leftward lateralization of intra-hemispheric coherence by the end of the first year of life, suggesting that the network specialized for face processing may develop atypically. Further, infants with the greatest leftward asymmetry at 12 months where those that later met criteria for ASD, providing support to the growing body of evidence that atypical hemispheric specialization may be an early neurobiological marker for ASD.R01 DC010290 - NIDCD NIH HHS; R01-DC010290 - NIDCD NIH HH

    Can the Archaeology of Manual Specialization Tell Us Anything About Language Evolution? A Survey of the State of Play

    Get PDF
    In this review and position paper we explore the neural substrates for manual specialization and their possible connection with language and speech. We focus on two contrasting hypotheses of the origins of language and manual specialization: the language-first scenario and the tool-use-first scenario. Each one makes specific predictions about hand-use in non-human primates, as well as about the necessity of an association between speech adaptations and population-level right-handedness in the archaeological and fossil records. The concept of handedness is reformulated for archaeologists in terms of manual role specialization, using Guiard's model asymmetric bimanual coordination. This focuses our attention on skilled bimanual tasks in which both upper limbs play complementary roles. We review work eliciting non-human primate hand preferences in co-ordinated bimanual tasks, and relevant archaeological data for estimating the presence or absence of a population-level bias to the right hand as the manipulator in extinct hominin species and in the early prehistory of our own species

    MEG coherence imaging in dyslexia: Activation of working memory pathways

    Get PDF
    The aims of this dissertation are to 1) review the genetic, neurodevelopmental, structural, and functional brain imaging studies that are the foundations of our understanding of dyslexia and 2) investigate the pattern of activation and functional connectivity of neuronal networks critical in working memory in dyslexics by means of magnetoenchephalographic (MEG) coherence imaging. Dyslexics showed an early onset of activation in the precentral gyrus and the superior frontal gyrus, which differed from controls where activation was initiated in posterior cortical regions (supramarginal gyrus and superior temporal gyrus). Further, dyslexics showed lower normalized amplitudes of activation in the right superior temporal gyrus and right middle temporal gyrus than controls during a spatial working memory (SWM) task. In contrast, during a verbal working memory (VWM) task, dyslexics showed lower normalized amplitudes in the right insular cortex and right superior temporal gyrus and higher, likely compensatory, activation in the right fusiform gyrus, left parahippocampal gyrus, and left precentral gyrus. Dyslexics performing a SWM task showed significantly reduced MEG coherence and lower 1) right frontal connectivity, 2) right fronto-temporal connectivity, 3) left and right frontal connectivity, 4) left temporal and right frontal connectivity, and 5) left occipital and right frontal connectivity. MEG coherence by frequency band showed lower mean coherences in dyslexics than in controls at each frequency range and when the bands were combined during the SWM task. In contrast, during the VWM task, dyslexics showed a higher coherence in the low frequency range (1-15 Hz) and lower coherence in the high gamma frequency range (30-45 Hz) than controls. Logistic regression of the coherence by group membership was significant, with an overall predictive success of 84.4% (88.9% for controls and 77.8% for dyslexics). Coherence between the right lateral orbitofrontal gyrus and right middle orbitofrontal gyrus paired region substantially contributed to group membership. These findings deepen our understanding of the underlying pathophysiology of dyslexia, highlighting the importance of working memory circuits and prefrontal cortical dysregulation in this disorder. These results have far-reaching ramifications not only for prevention and early diagnosis, but also for the development of effective, evidence-based treatments and interventions

    Hemispheric asymmetry in perception: A differential encoding account.

    Get PDF
    published_or_final_versio

    Speech-brain synchronization: a possible cause for developmental dyslexia

    Get PDF
    152 p.Dyslexia is a neurological learning disability characterized by the difficulty in an individualĀæs ability to read despite adequate intelligence and normal opportunities. The majority of dyslexic readers present phonological difficulties. The phonological difficulty most often associated with dyslexia is a deficit in phonological awareness, that is, the ability to hear and manipulate the sound structure of language. Some appealing theories of dyslexia attribute a causal role to auditory atypical oscillatory neural activity, suggesting it generates some of the phonological problems in dyslexia. These theories propose that auditory cortical oscillations of dyslexic individuals entrain less accurately to the spectral properties of auditory stimuli at distinct frequency bands (delta, theta and gamma) that are important for speech processing. Nevertheless, there are diverging hypotheses concerning the specific bands that would be disrupted in dyslexia, and which are the consequences of such difficulties on speech processing. The goal of the present PhD thesis was to portray the neural oscillatory basis underlying phonological difficulties in developmental dyslexia. We evaluated whether phonological deficits in developmental dyslexia are associated with impaired auditory entrainment to a specific frequency band. In that aim, we measured auditory neural synchronization to linguistic and non-linguistic auditory signals at different frequencies corresponding to key phonological units of speech (prosodic, syllabic and phonemic information). We found that dyslexic readers presented atypical neural entrainment to delta, theta and gamma frequency bands. Importantly, we showed that atypical entrainment to theta and gamma modulations in dyslexia could compromise perceptual computations during speech processing, while reduced delta entrainment in dyslexia could affect perceptual and attentional operations during speech processing. In addition, we characterized the links between the anatomy of the auditory cortex and its oscillatory responses, taking into account previous studies which have observed structural alterations in dyslexia. We observed that the cortical pruning in auditory regions was linked to a stronger sensitivity to gamma oscillation in skilled readers, but to stronger theta band sensitivity in dyslexic readers. Thus, we concluded that the left auditory regions might be specialized for processing phonological information at different time scales (phoneme vs. syllable) in skilled and dyslexic readers. Lastly, by assessing both children and adults on similar tasks, we provided the first evaluation of developmental modulations of typical and atypical auditory sampling (and their structural underpinnings). We found that atypical neural entrainment to delta, theta and gamma are present in dyslexia throughout the lifespan and is not modulated by reading experience

    Dissociation of sensitivity to spatial frequency in word and face preferential areas of the fusiform gyrus

    Get PDF
    Different cortical regions within the ventral occipitotemporal junction have been reported to show preferential responses to particular objects. Thus, it is argued that there is evidence for a left-lateralized visual word form area and a right-lateralized fusiform face area, but the unique specialization of these areas remains controversial. Words are characterized by greater power in the high spatial frequency (SF) range, whereas faces comprise a broader range of high and low frequencies. We investigated how these high-order visual association areas respond to simple sine-wave gratings that varied in SF. Using functional magnetic resonance imaging, we demonstrated lateralization of activity that was concordant with the low-level visual property of words and faces; left occipitotemporal cortex is more strongly activated by high than by low SF gratings, whereas the right occipitotemporal cortex responded more to low than high spatial frequencies. Therefore, the SF of a visual stimulus may bias the lateralization of processing irrespective of its higher order properties

    Hemispheric asymmetry in the efficiency of attentional networks

    Get PDF
    Advantage in conflict resolution was observed, which may indicate hemispheric asymmetry of the executive network. No VF effect for alerting was found. The results, consistent with the common notion of general right hemisphere dominance for attention, provide a more detailed account of hemispheric asymmetries of the attentional networks than previous studies using the LANT task
    • ā€¦
    corecore